US009454625B2

a2 United States Patent

Danielsson et al.

US 9,454,625 B2
*Sep. 27, 2016

(10) Patent No.:
45) Date of Patent:

(54) SYSTEMS AND METHODS FOR CREATING
APPLICATION INTERFACES FOR
FORMING AND SOLVING PROBLEMS IN A
MODELING SYSTEM

(71)
(72)

Applicant: Comsol AB, Stockholm (SE)

Inventors: Erik Danielsson, Vaellingby (SE);
Eduardo Fontes, Vallentuna (SE); Lars
Langemyr, Stockholm (SE); Victor
Littmarck, Solna (SE); Svante
Littmarck, Dedham, MA (US); Nils
Malm, Liding6 (SE); Bjorn Sjodin,
Lexington, MA (US); Daniel Smith,
Cambridge, MA (US); Tomas
Normark, Bromma (SE)

(73)

")

Assignee: Comsol AB, Stockholm (SE)

Notice: Subject to any disclaimer, the term of this

patent is extended or adjusted under 35
U.S.C. 154(b) by 0 days.

This patent is subject to a terminal dis-
claimer.

@
(22)

Appl. No.: 14/747,803

Filed: Jun. 23, 2015

(65) Prior Publication Data

US 2015/0293749 Al Oct. 15, 2015

Related U.S. Application Data

Continuation of application No. 13/835,091, filed on
Mar. 15, 2013, now Pat. No. 9,098,106.

Provisional application No. 61/681,613, filed on Aug.
10, 2012, provisional application No. 61/740,149,
filed on Dec. 20, 2012.

(63)
(60)
Int. CL

GO6F 9/44
GO6F 17/50

(51)
(2006.01)
(2006.01)

16000 St

A

Multiphysics
Modsl
Data Struclure,

1600a 1620

Create or Select

cate 0 Add
Multiphysics Model Application Feature

(52) US.CL
CPC

GOG6F 17/5018 (2013.01); GOGF 8/00
(2013.01); GO6F 8/20 (2013.01)
(58) Field of Classification Search
... GO6F 17/5018
See application file for complete search history.
(56) References Cited

U.S. PATENT DOCUMENTS

5,654,903 A 8/1997 Reitman
6,108,670 A 8/2000 Weida
(Continued)

OTHER PUBLICATIONS

Fontes et al., U.S. Appl. No. 13/184,207, filed Jul. 15, 2011, entitled
“System and Method for Accessing Settings in a Multiphysics
Modeling System Using a Model Tree,” 117 pages.

(Continued)

Primary Examiner — Chameli Das
(74) Attorney, Agent, or Firm — Nixon Peabody LLP

(57) ABSTRACT

An apparatus for generating an application data structure
includes a physical computing system comprising process-
or(s), input device(s), display(s), and memor(ies). The
memory includes executable instructions that cause a pro-
cessor to perform the acts of embedding a multiphysics
model data structure for a physical system in an application
data structure. Application features are determined to add to
the application data structure. First data is added represent-
ing a form feature for the application features for the model
of the physical system. Second data is added representing at
an action feature for the application features. The second
data is associated with at least one modeling operation to
define a sequence of operations for modeling the physical
system. The application data structure is updated including
the added first and second data and the associating defining
the sequence of operations. The updated application data
structure is stored on the memory device(s).

21 Claims, 43 Drawing Sheets

Application Add Embedded
Model to Application
Da& Scare Data Structurg Add Input
Declaration?

Add
Activation
Condition?

Add In| Eut
Form or Form
Collection?,

Add Qutput o
Declaration?
1660

1600d
Add
Application

gature?

1830
Yos ~/
Add Input

| Decigralion? |

Add Input Form or Add Aclivation Add Quiput
Form Collection? Condition? Declaration?

No
Qutput Application
Data Structure

1695

Yos ~

Add
Activation
Condition?

Yes /\/

o,
Add Aclion?
1690

es ~/ Yes

| Add Wizand? |

Add Activation
Condition?

| Add Action?

Add Qutput Form
or Form Collestion

US 9,454,625 B2

Page 2
(56) References Cited 2006/0075382 Al 4/2006 Shaburov
2007/0219929 Al 9/2007 Steinbach
U.S. PATENT DOCUMENTS 2008/0313282 Al 12/2008 Warila
2009/0044003 Al 2/2009 Berthiaume
6,542,930 Bl 4/2003 Auvenshine 2011/0054869 A1* 3/2011 Li .o GO6F 17/5009
7,076,332 B2 7/2006 Cifra] 703/10
7412366 B1* 82008 Englehart ... GOGF 8/34 2011/0107246 Al 52011 Vik
703/6 2012/0036503 Al* 2/2012 ReGVES ..oocvrrvrrrirrnns GO9B 9/02
7,519,518 B2 4/2009 Langemyr 717/168
7,596,474 B2 9/2009 Langemyr 2012/0179426 Al 7/2012 Fontes
7,623,991 Bl 11/2009 Langemyr 2013/0007698 Al 1/2013 Warila
7,596,474 Cl1 2/2012 Langemyr 2013/0066823 Al 3/2013 Sweeney
7,623,991 Cl1 2/2012 Langemyr 2014/0019112 A1* 1/2014 Canedo GOGF 17/5009
7,519,518 C1 5/2012 Langemyr . 703/21
8,219,373 B2 7/2012 Fontes 2015/0178422 Al* 6/2015 McKimcccooeenn. GO09B 9/00
8,457,932 B2 6/2013 Langemyr 703/6
8,626,475 Bl 1/2014 TFontes
8935129 B1* 1/2015 GAO ..oocoorrn GOGF 17/30958 OTHER PUBLICATIONS
345/419
8.954.302 B2 2/2015 Langemyr Fontes et al., USs. Appl No. 13/599,619, filed Aug. 30, 2012,
9,098,106 B2 8/2015 Danielsson entitled “System and Method for Creating User Interfaces in a
2003/0105614 Al* 6/2003 Langemyr GOG6F 17/12 Multiphysics Modeling System,” claiming priority to U.S. Appl.
7032 No. 61/529,645, filed Aug. 31, 2011, 98 pages.
%883;85;3@?3 ﬁ} ggggi flumbaugh International Search Report for International Application No. PCT/
Angemyt US2013/054436 dated Jan. 31, 2014, 3 pages.
2004/0153992 Al 8/2004 Molina-Moreno : L . e
2005/0005266 AL* 1/2005 Datig oo, GO6F 17/279 Written Opinion for International Application No. PCT/US2013/
717/136 054436 dated Jan. 31, 2014, 7 pages.
2006/0041502 Al* 2/2006 Blaircccccoeveneeee. GO6F 17/227

705/37

* cited by examiner

U.S. Patent Sep. 27, 2016 Sheet 1 of 43 US 9,454,625 B2

110
-\

112
Data Storage /'/
System
//118
//1143 //114b //114n
Host 1 Host 2 Host n

Figure 1

U.S. Patent Sep. 27, 2016

220
] GUI Module

Sheet 2 of 43

US 9,454,625 B2

A

Modeli

| Simulation Module

ng and /222

4

A

224X

Data Sto
Retrieva

rage and
| Module

226

228

User Data
Files

Figure 2

U.S. Patent Sep. 27, 2016 Sheet 3 of 43 US 9,454,625 B2

(@ Model Wizard\ = 0)
Select Space Dimension & D

C 2D axisymmetric
O2b
C 1D axisymmetric
C1D
QCob

Figure 3

U.S. Patent Sep. 27, 2016 Sheet 4 of 43 US 9,454,625 B2

(@ Model Wizard\ = 8)
439\ Add Physics & >

b N\ AC/DC
440\ 3 '4))) Acoustics

L P %8 Chemical Species Transport

4 U Electrochemistry

b 0= Fluid Flow

4 §§§ Heat Transfer
Heat Transfer in Solids (ht)
(D Heat Transfer in Eluids (hi) L 442
() Heat Transfer (Eﬂﬂ Add Selected) 1
E Bioheat Transfer (hi)
U Heat Transfer in Thin Shells (htsh)

i

|2

LY

£ Conjugate Heat Transfer
'I:i' Radiation

é Electromagnetic Heating

14

>

b
> @ Plasma
4 Radio Frequency
443\‘ 4 @ Structural Mechanics

[T-p Au Mathematics
446

=
gr €

(<]

— Selected Physics

M. Heat Transfer (ht)

448~

| — Dependant Variables

Temperature:

Surface radiosity:

II

Discrete ordinates method: sS4 -
Radiative intensities: T1 -
I2
I3
14
1s ~

Figure 4

U.S. Patent

550~

Sep. 27, 2016 Sheet 5 of 43

US 9,454,625 B2

A Preset Studies for Selected Physics

E Stationary 552
]& Time Dependant /
£ Custom Studies
A Preset Studies for Some Physics
mz Frequency Domain
Empty Study
I'l—'L Eigenfrequency
]'ﬂ Eigenvalue

- Selected physics

Heat Transfer (ht)
E— Electric Currents (ec)

Figure 5

(. ")
@ Model Wizard =8
AN - 554
Select Study Type G D
|- Studies

U.S. Patent Sep. 27, 2016 Sheet 6 of 43 US 9,454,625 B2

(558 Settings \ @& = 8)

659~ | o Heat Transfer in Solids
(Domains)
6604 Selection: (AII domains v)

1 E‘ih gh

- 642

(b Override and Contribution

(p Equation

(D Model Inputs

) S S

(v Coordinate System Selection

Coordinate system:

Global coordinate system v

¥ Heat Conduction

Thermal conductivity:

k User defined A 4
{ 4.2[W/m/K] i W/(m-K)
Isotropic w

{*¥ Thermodynamics

Density:
P User defined w
664
[~ { 100[kg/m"3]*z*1e-3[1/m] ! kg/m?
666 Heat capacity at contsant pressure:
i P From material ¥

Figure 6

U.S. Pat

776 -
774 —

ent Sep. 27, 2016

Sheet 7 of 43

US 9,454,625 B2

4 @X Untitled.mph (roof)
@ Global Definitions
4 Model 1 (mod1)
p B Definitions
4)6\ Geometry 1
© Block 1 (bik1)
Form Union (fin)
4 @ Materials
> 8B Aluminum 3003-H18
4 Heat Transfer (ht)
4 Cg Heat Transfer in Solid
b
> @ Thermal Insulation 1
> O Initial Values 1
p E=Electric Currents fec)

& Mesh 1
3 Study 1
| 4 @ Results

778
\
[fT Mocel Builder _ = O)(®s settings _ ¢ 5 @ =n
B g ¥ %=t Equation View = 770

(V Variables)
| Name | Expression a
ht.kxx 4 2[W/(m*K)]
ht.kyx 0
ht.kzx 0
ht.kxy 0
ht.kyy 4.2[WI(m*K)]
v
< 1 | >
(v)
Name Shape function | Unit | De
T Language K Ten =
< 1 | >

(V Weak Expressions

| Weak expression

-772

I\ 1WImA2]*test(Tx)-(ht.k_effocT...fzy* Ty+ |V

Figure 7

U.S. Patent Sep. 27, 2016 Sheet 8 of 43 US 9,454,625 B2

-
) Setting\ & <=8
879~ —
@& Material
(Geometric Scope)
Geometric entity level: (Domain v]
Selection: [AII domains v)
880 - N % 9P
=
&
(¥ override)
(v Material Properties)
Basic Properties
Electrochemistry
Electromagnetic Models
Solid Mechanics
Piezoelectric Models
Gas Models
GH
'(' Material Contents)
884 | Property Nar
k v | Electric conductivity Sign!
v/ i Heat capacity at constant pressure iCp
v/ | Relative permittivity epsi
Relative permeability mur
Coefficient of thermal expansion alph
Density rho
v

Figure 8

U.S. Patent

Sep. 27, 2016 Sheet 9 of 43

(s SettingA @ = 0]
989~
= Temperature
(Boundaries)
990 Selection: (Domain v]
\J | By P
o =
4 & =
(» Override and Contribution)
(» Equation)
(‘ Temperature)
992 \ Temperature:
- To [293.15[K] | k

Figure 9

US 9,454,625 B2

U.S. Patent

1009\

1006 -
1004

Sep. 27, 2016

Sheet 10 of 43

1008
\\
[T Model Builde\ = El‘](%E Setting\ Soe a
~
tg T - Equation View
4@ Untitied.mph (root)
® Global Definitions (V Variables
4) Model 1 (mod1) -
b B Definitions Name Expression
4 P\ Geometry 1 ht.TO 293.15[K]
® Block 1 (bik1) ht.ndflux ht.nx*(-ht.k_effx...ot.mod1.H4
Form Union (fin) ht.nteflux ht.nx*(-ht.k_effx...ot.mod1.H
4 & Materials
b #B Aluminum 3003-H18
4 Heat Transfer (ht)
4 C@Heat Transfer in Solid <] m >

N
b @@ Thermal Insulation 1
p D Initial Values 1
Cga Temperature 1

>
4 E3 Electric Currents (ec)

p CDCurrent Conservation

p @@ Electric Insulation 1

p (O Initial Values 1
Mesh
3 Study 1
» B Resutts

Name

Shape function | Unit

<| [T]

rv Weak Expressions

| Weak expression

< [11] |

S

(V Constraints

| Constraint

Constraint fc

N\ TxK/m-ht.TO

test(T-ht. TO)

Figure 10

US 9,454,625 B2

1002

U.S. Patent

1109

1112 ~

1110+

& SettingR
N

Sep. 27, 2016 Sheet 11 of 43

@ = 8]

iz Stationary

(b Results While Solving

‘(V Mesh Selection
Geometries:

[Geomety 1 |

Mesh: (Mesh 1

Physics interfaces:

Heat transfer (ht)
_| Electric currents (ec)

[¥] Use in this study

Discretization: (Physics settings

(» Extension)

(v Physics Selection]

1114

Figure 11

US 9,454,625 B2

U.S. Patent Sep. 27, 2016 Sheet 12 of 43 US 9,454,625 B2

1219
AN

1220
s @suar1) 1222

17 step 1: Stationary
]Q-‘_ Step 2: Time Dependent

1224 ~ 4 rf'f'n Solver Configurations

4 @ Solver 1 12268

g't'*af Compile Equations: Stationary f
4 uvw Dependent Variables 1

W.omod1_v 1227a
ollp mod1_T S 1228a
b 175 Stationary Solver 1
Store Solution 2 /1 226b

2-f Compile Equations: Time Dependent (2)
4 uvw Dependent Variables 2
U\.!_I'I.P mod1_v _1227b
UTP modi1_T f1 228b
4 I&) Time Dependent Solver 1

Figure 12

U.S. Patent Sep. 27, 2016 Sheet 13 of 43 US 9,454,625 B2

1329
N\
1 330\ Select Space Dimension
v
1331 \ Select Physics
Interface(s)
v
1332
\ Select Stud(ies)
1333a
N Done with All Yes

Physics Add Model

Interfaces

1334 \ Specify Geometry To 1440:
v Fig 14
1
335 \ Specily Malerials
1336 v
\ Specify Domain Settings
, v
1337 \ Specify Boundary
Settings

1338a

Modify PDEs

Jr1338b

Specify PDEs
Modification

'y

Figure 13

U.S. Patent Sep. 27, 2016 Sheet 14 of 43 US 9,454,625 B2

1439
) From 1333b
Fig 13
v
1440
U Specify Mesh(es)
1441
> Done with Yes To 1550
Study Fig 15
1442a
Add Study
1442b
Select Study f
|
1443a
Add Study
Step 14430
No Select Study Step
]
y
1444\ Specify Physics Interfaces
in Study Step(s)
v
1445\ Specify Study Step
Settings

Figure 14

U.S. Patent

Sep. 27, 2016 Sheet 15 of 43

From 1441
Fig 14

v

1550\

Generate Solver
Sequence

1551

Done with Yes

Solver

A

US 9,454,625 B2

1552\

Edit Solver Solve PDEs

f1553

Sequence

v
| C Stop

)

Figure 15

US 9,454,625 B2

Sheet 16 of 43

Sep. 27, 2016

U.S. Patent

9| b4

]

uono8|j07) Wio4 Jo
Wwio4 IndinQ ppy

o4 10 W04
InaNQ ppy

UONEAIDY
PRY

¢UoNdy ppy

; UOIIPUO .
:m_ﬁ \.,ﬁ,q %2 ¢UonoY ppy PIEZIM PPY
\/\ SON \/\ SO\
0691 Ge9l
{UOJIPUOD

LPIBZIM PRY

2JmMon.AS eleq
uonedlddy inding

s

_ _ 00191
¢uoneseoeq 4uonipuon ¢U01198/[09) W04 ¢uonesesq
INAINO ppy UOJBAIdY PPy 10 Wio4 Jnduj ppy induj ppy geimeed
uoneoddy
~ sop ~ sap ~ sep SOA ppY
0991 0991 0e9l 00091 PO09L
; LOREIE[09 cuonpuoy ¢U081109 ; UOBIE03 o I~
70 ppY HORe v 0 oy i ooy oINS Bied
ppY jndu| ppy uoiyealddy o} [3pojy sinjon.s Qﬂmo
peppequI3 ppy UORE oY
2ININIG e
ainjea uoneaddy [opo}y soisAudiynpy _ F_&%_\,_F d
pRY 108[8S 10 8je8l) soisAydninjy
029t 4009}

US 9,454,625 B2

Sheet 17 of 43

Sep. 27, 2016

U.S. Patent

L1 Bi4 eLil

_ PIEZIA T

9Ll = ainjes uoneolddy _|
(_) _\ O % O
— | vowpwod voremoy |- g0zL oy
m _ _“
i L0l Loy « 0
m _
. 71 Uo1D8][07) WO _4
i —~
m ;e R Y A R A, v._ co_g_DCOQ co_g.m>=o< O NON_\
o i * Q_ 90Z1
. — w03 s_.ﬁo _\$
P - 602}
_ " =5 _ uonesepag IndinQ _)W|o
S T B I voppuog uopenpoy J 041
i ! i L
P vlil— |
| " =01 WO Jndy $
P i <l
A e €0.1
Pl i [uonemepsqindu cOLl
.«...O — .“ _ D H _ *..F \l\
[emeeq Sopeodd
o emeed Uojeorody |——
M dd
[SPON peppequig uaneg|ady
104 _\\;.\

US 9,454,625 B2

Sheet 18 of 43

Sep. 27, 2016

U.S. Patent

gL b4
= MO[] B2BHUNSANS .nw 4
SOIUBYOBI [BINJONNS & ¢
i
ewseld & ¢
Moj4 adid & ¢
|- Buioes] spmed mw _
s[eus]el [eInjonsS JesuljuoN & ¢
I EX
SOIPINYOIN =ni
= SWIW 1 41--2081
Jajsuel) Jea i ¢
01T 1 [R v solUBYIBWOoDS) &3
uoisodaposjos|g
UuoISOLI0D
BunaauiBug uonoeay [esiWBYD
j@9ysmo|4 Buuasuibug [eotway) ¢
Q40 #
S|I80 [°n4 8 selivpeg e ¢ -
S[JSNOJY | 4 dieH |
v 0a/Y . *
80BLBUI NIJO-3dVI PPY
— yoreag __ |
Apms ppy | B
Deo e (jppo ppv | @ |
~ |/ uonetedo opoo ener | BE
€08l uoioy %
synsay & « Hien nien
L Apmg T < MHoN oneoyddy w2 4
(" o) iojenioy [euisy | PIEZIM “synsey @ 4
\/\ suonuyeq [eqo|s & 4 a.nea uonesiddy @
gog, (1001) ddeydw Lo#maom &7

r (oo ddeydwr Bepnun @ v

N,

¢08l

US 9,454,625 B2

Sheet 19 of 43

Sep. 27, 2016

U.S. Patent

6l bi4

((edA}) | aimeay uopeoiddy F) 4
\/\ synsey i 4
G061 L APIS R, <
(1 pow) Joyen)ay [eusy] Q] <

suoniuysq eqolo &) <
(joc.s) ddeydwr-iolenjoe @ ¢

—

e dieH | 2
Apmis ppv |
[9POI PPY | @
uonelado apod eaep
uonay | (<)
wey nue | [, PHeNddV &
synsoy & <
NUB\ m# _\>UBM%A
plezim M:wm._._., 7 leuwsy] [<
ﬁ aJnyesa uoneoiddy &@& 5 129019 @ 4
(U7 uoe dwrioienyoe @w 4

7061

N,

€061

U.S. Patent

Sep. 27, 2016

Sheet 20 of 43 US 9,454,625 B2
Fig 20
2006
(rxol‘Jl Applicaticn Featu& = EP
(v Identifiers] 2007
Type: | Simulation i//_ 2008
Description: | Actuator }/ 2009
Icon: | jouleheat_thermal.png ‘ [Browse...]
(— ‘] 2010
+ Restrictions |
I IMust be after another node
[~ [=
(—] 2011
2012 | ™ references .
NA\(¥]Add as permanent node
2013 Position in sequence: [Before other nodes vJ
/\@ Singleton feature

U.S. Patent

Sep. 27, 2016

PR actuator.mphapp (root)
> (& Global Definitions
> Thermal Actuator (mod 1)

b R Study 1
> | Results

Sheet 21 of 43

2102

/\/

4 (¥ Application Feature 1 (Simulation))

olli

23

String data field

¢4ﬁ

*O

*
e i

L
A,
'y

H W A

String array data field
Section panel

Menu

Menu item

Action

On-create action
On-delete action
Java code operation
Application Feature
Wizard

Copy

Duplicate

Rename F2
Properties

Help F1

US 9,454,625 B2

Fig 21

2104

2103

US 9,454,625 B2

Sheet 22 of 43

Sep. 27, 2016

U.S. Patent

¢c bi4

90¢¢
A
((100s) | joued uogoss [)<
sjuswwo) Jedojersg §

(uonginuig) | 8imes 4 uoneslddy &% 4

synsey &Y «
| ApmS T, ¢
(1 pow) Joyenioy lewlsyl [y <
suoniuyeq [eqol @) <
(;00.4) ddeydwriojenyoe @r

nuaiy | [He

jpued uonoeg DL

p|ay elep Aeue bug ,&f M_ v

ploy eyep bums | .,

s~ Q:QE:E.@ | @injea{ uonesiddy &? 4
¥02¢ 2

mowM/\ synsey & 4

L Apmg e ¢

(1 pow) Joyenioy [euay] [y 4

suoniuyeq eqojo @) <
(1004) ddeydwrioienoe @ 4

|\

\;
G0Z¢

U.S. Patent Sep. 27, 2016 Sheet 23 of 43 US 9,454,625 B2

Fig 23
2307
(E Section panel\ = 8
2308
s

Title: | Actuator Length|

US 9,454,625 B2

Sheet 24 of 43

Sep. 27, 2016

U.S. Patent

g 614

clve

N

((1u) nduiyxey [m) 4
sjuawwog Jadojaaag §
H (109s) | |oued uonaasg @A
sjuswwo) sedojpreq §
Q:o.cmSE.@ | aJnjea uoneoijddy &@ 4
sinsey & 4
| Apmig T 4
(1 pow) Joyenioy lewlsy] Q)] <

suonuieq reqoo @ <
(1001) ddeydwriojenjoe @ ¥

b4

]

dieH

sanJadoid

cd

aweusy
eeoldng

fdoo
dn eno

G E Y

—

WA 74

Aeidsip eleq | [&]
Hoejs pie)d | (=
x0q %0840 | A,
X0Q 0quio?) | [ay]

Indul JojoeA | [Ba] 4

ﬁ

60¥¢

ndui jxa| @L 1

s

~

Lve

ﬁ (Lo8s) | |1oued uonaag DT

sjuswwo) Jadojeasg §

Q:o.am\zs.\m,\ | @injead uonedijddy %) ¥

synsay & «
| Apmg T <
(1 pow) J01enpOY |euney] [4

suopuyeq [eqoo @) <
(1ooi) ddeydw-iojenioe @ »

U.S. Patent Sep. 27, 2016 Sheet 25 of 43 US 9,454,625 B2

2513 Fig 25

Text irm =

fv Select source node for data field]

Global Definitions

Py Parameters I

[Thermal Actuator (mod 1)
= Definitions
#B Materials

¥ Application Feature 1 (type)

|| O

2514 ®

[+ Data field reference)
——

2515\ Parameter: [L (Actuator length) v]

fv Data field settings)

>
2516 Default value: | 240[um] |

fv Optional widgets)
I

2517] Include description

—{ Description: | Actuator length |

¥ Include symbol
— Symbol (LaTeX encoded): | L |

2519] Include unit
\\& Physical quantity: (Lenth (m) V]

— Widget layout

Section

2520 Text Field
\\ | Description (optional)

Symbol ; Unit
(ogtional) Text Field (optional)

4] 1

U.S. Patent Sep. 27, 2016 Sheet 26 of 43 US 9,454,625 B2

Fig 26

PR actuator.mphapp (root)
b (& Global Definitions
> Thermal Actuator (mod 1)
b R Study 1
> [Results
4 r,&“ Application Feature 1 (Simulation)
§ Developer Comments
4 E Section panel 1 (sect)

§ Developer Comments 2604
4 ([=] Text inputt (tin1)) ~
/\/ *<® | Activation condition)
2602 *4¥ | Regular expression
4+ | Move Up Ctrl+Up
3 2603
] | Copy -
Duplicate
X | Delete Delete
Disable F3
Rename F2
@E Properties
Help F1

US 9,454,625 B2

Sheet 27 of 43

Sep. 27, 2016

U.S. Patent

KA
X deH |)
saiuadold | 25|
A auweusyY | ®
on | e|qesid | @
8j8led aeea | &
90.2 ajeoldng | 5]
\/\ Adog | [y
TE&E | Aedsip ejeq [=) < dn+40 dnesop | &
sjuswwog Jadojeasq § —

(zoos) g |oued uonoeg _M_ v ﬁ Reidsip ejeq @&
(Vwesedy) indul xe| [r < s e pied | =,
sjuswwo) Jadojersq § S0.L¢ X0g o8y | Aa

(198s) | |oued uonoag D 4 xoq oquod | [,

sjuswwo Jadojeneq § ndUl 10198

(uoneinus) |, eunjes uoeonddy 2 » nauopon | Bl | eose
synsey &Y < nduy 1xe] | &=, \/\
L ApmS L < \/\ ((z09s) z Joued uonoes [] »
(1 pow) Jo1enjoy leway] 3] < 0.2 (tun) Landurixe) [4
suopuya([eqol @ 4 sjuswwio) Jadojeasq §
(1o0.) ddeydwriojenjoe @ » (109s) | puUed UoIDaS D 4

sjuswwo) Jedojpasg §
(uonenuus) | sinjesad uoneoiddy &@ 4
\/\ synsay & 4
2022 L ApmS T <
(1 pow) 103enjOY lewieyl I <
suopiuyeq [eqo|o &) <
(1o01) ddeydwiojen)oe @ 4

U.S. Patent Sep. 27, 2016 Sheet 28 of 43 US 9,454,625 B2

Fig 28
2807 — —
Data dispm B)
AVAN
fv Select source node for data field)
Results
2808 B e
S o432 Derived Values
{28 Point Evaluation 1)

r,&"*‘ Application Feature 1 (Simulation)

O

\ (v Output data reference A

P——

Global evaluation: [Point Evaluation 1 -]

\\ [+ Optional widgets)

P——

2811 Include description

]

Description: [Displacement]

2812 W] Include symbol

\\\ Symbol (LaTeX encoded): ‘ \delta |

—Widget layout

2813

.

Description (optional)

Symbol

(optional) Data dlsplay

US 9,454,625 B2

Sheet 29 of 43

Sep. 27, 2016

U.S. Patent

6¢ b4

S06¢
(uny) Z uooy (<) < L
(Anewoao) | uoroy (<) <
(z99s) ¢ |oued uoipoeg D 4
(199s) | |oued uoipag D 4
sjuswwo) Jedojeneq §
(uogeinuig) | ainjes uopeo)ddy &_\ 4
synsey &Y «
| ApiS S, <
(1 pow) Jo0ienioYy [euuey] Q)] 4
suopuyeq [eqo|o @) ¢
(joos) ddeydw-iojenioe @ »

uonoY @L

k wisp nuspy | pE
7062

]
alVETTY, m+

[pued uonoeg mﬂ_

pIay elep Aeue Buns | 4%,

pisy ejep Bulis | 2.,
\/\ ?Em&o& | ainjes uopeolddy & | ¥
062 synsey B <
| Apmig T <
(1 pow) Jo1enoy [euey] [<
suopiuyeq [eqo|9 &) <

(3001) ddeydw-iojenoe & »

A A A A A A

U.S. Patent Sep. 27, 2016 Sheet 30 of 43 US 9,454,625 B2

Fig 30

3006

[\/
(@ Actior\ =

a

[>] (M

[+ Settings]

Type: ‘ Geometry |

Description:‘ Update Geometry |

Icon: ‘geometry.png |[Browse...]

[v Add node operation to sequence)

& Global Definitions -
Thermal Actuator (mod1)
= Definitions
#\ Geometry 1
#8 Materials
& Poly-Si (mat1)
/\\/ % Joule Heating and Thermal Expansion
3007 — &2 Mesh 1
Results
(#
o’ Application Feature 1 (Simulation) E|

[<] I [o]
= ®

[+ Sequence)

— | Node Operation —
/ | /Geometry1 =

3008

U.S. Patent Sep. 27, 2016 Sheet 31 of 43 US 9,454,625 B2

Fig 31

4B actuator.mphapp (root)
> (&) Global Definitions
> Thermal Actuator (mod 1)

b R Study 1 3121
> Results /\'/

a ¥ Application Feature 1 (Simulation)
§ Developer Comments

> E Section panel 1 (/ApplicationNo

> Section panel 2 (/ApplicationNo

> (=) Action 1 (Geometry)

> (>) Action 2 (Run)

fp Menu item 1 (item1) |

> Menu item 2 (item?2)

3122

US 9,454,625 B2

Sheet 32 of 43

Sep. 27, 2016

U.S. Patent

g 9161 AN 808

x\W/r\A

aunjes; uole(buls &

- m%oC _mﬁo gov_mm. :
" '93U8Nbas Ul co_#_wOl
— opou Jusuewsd se ppy
$30UBIBLBId » !
L ~ fa1ze
)i B ~Ti1ee
; Wuwns jnsal) Lodal nsay B ¢ LY
e @DOU JBYJOUE JaYR 8Q SN (suonessdo) suonesedo .f..,.._. "wrwm
1 SUOROLISEY ~ | (pnbry) U_:g._ o Tilerze
i-"asmoig i5an |dde Jaxiw 09| . _Smm
_ synsey @ ¢ i
s/ | :uonduassg | Apmg e 4 0ze
|BSSaA | :adA] (1 pow) . |8pojy B 411

suopiuyaq feqon @ <

\ SISUBUSPI~) Joydw | A uoeaidde 1axiu @ *
(58] WG A e Yowi«a®O e || 1HERE ¢ D!
= /mo_:%_o Plloo \2inea4 uojeolddy 2 m_[|_u/h%__=m_ uopeol|ddy 1] J:

2iRE D ee SELOL
dopreq_djeF SUORAD MOIA 1P 9]

soisAydninyy TOSWOH - ddeydw- La"uoneondde iexiw &

J

90ce

U.S. Patent Sep. 27, 2016 Sheet 33 of 43 US 9,454,625 B2

Fig 33

3319

4 (¥ Vessel (Vessel))
() Developer Comments
a E| Vessel Specification (/ApplicationNodeList/app2/ApplicationNodeList/sec1)
() Developer Comments
Height (/param/H)

—]
EXT

4
/\/[> Diameter (/param/T)

3324 /,\/

3325

3323

U.S. Patent Sep. 27, 2016 Sheet 34 of 43 US 9,454,625 B2

Fig 34

3420

4 % Impeller (Impeller)
(&) Developer Comments
A E Impeller Specification (/ApplicationNodeList/app21/ApplicationNodeList/sec1)
() Developer Comments
4 Impeller Type (impeller_type)
(<) Developer Comments
3426 b ¥ Valid Values 1 (val1)

D> Da (/param/Da) \/\
/\/ > N (/param/N) 3427

3428 C (/fparam/C)
A Pitch Angle (/param/pitch_angle)
(<J Developer Comments
b <& Activation condition 1 (act7) 3430
¥ Impeller Type (field1)
> (>>) Build Impeller (BuildGeometry) 3402
3405), Build Geometry (item1)

3429

US 9,454,625 B2

Sheet 35 of 43

Sep. 27, 2016

U.S. Patent

Gg 614

—
Anouios9 pling

=
|

106€
Jejledw) pling ﬁ
payond paYoHd uoysny
ape|g-inod §| coge ape|g-ea.y J| c06e q0ge ape|g-XIS |
Q2=<D
N
vose G0GE
\/\ \
\/
€05 | N 90s¢e
N |/

U.S. Patent Sep. 27, 2016 Sheet 36 of 43 US 9,454,625 B2

Fig 36

3621
kr,&“* Waveguide, General (WaveguideSeitings)
r,&“ String data field1 (field1)
E Section panel 1 (/ApplicationNodeList/app1/ApplicationNodelList/sec1)
E Section panel 2 (/ApplicationNodeList/app1/ApplicationNodelList/sec2)
3622 Menu item 1 (item?1)
() Action1 (solve)
r,&“ Straight Section (StraightSection)
r,&# String data field1 (field1)
3631 r,&# String array data field 5 (field5)
k r,&“ String array data field 6 (field6)
3613 E Section panel 1 (/ApplicationNodeList/app2/ApplicationNodelList/sec1)

k Menu item 1 (item1)
Create section (code2)
3614

i Add object selection (code3)
(>) Action (Build Section)

rr,&# Elbow Section (LeftRightSection)
r,EF String data field 1 (field1)

r@‘ String data field 2 (field2)

¥ String array data field 3 (field3)

r,@‘ String array data field 4 (field4)

E Section panel 1 (/ApplicationNodeList/app3/ApplicationNodeList/sec1)

Menu item 1 (item1)

(>>) Action1 (BuildSection)

i Create section (codel)

i Add object selection (code2)

3623

3632

3613

US 9,454,625 B2

Sheet 37 of 43

Sep. 27, 2016

U.S. Patent

1€ Bi4

vLLE

€LLe

e

0L2€

synsoy Y 4
G uoioas Jyblens 3
¥ uooag JubriAe HK

VI ISR - —
g Z uoijoag Jyblens

80.S | sBuiag apinboaepn %

laoot ydwr-apinBanem @g 4
80.¢

US 9,454,625 B2

Sheet 38 of 43

Sep. 27, 2016

U.S. Patent

l ‘Ueds uwnjon

e L xogisn (]

I :Ueds Moy | X0g Y0340 [

#mwm,// l uwnjo9 | ¥0g 0GW0) =)

L MOy Z 19qe(v)

e M

/€8¢ .
EP8E 1 0c BRH 7 voposjon wio4 B8 ¥
dnewony [cr8e 1GL UIPIM | Xog Y2840 O T~

(= } edhL o 96°GZL K uonisod | Xog 0quod = ._mMmmm

FiubieH 4 Il X UONIS0d £ 130E1 (v)
\/\" J | wpm fe cxogxo M 1
yb8E o Ov8E e ¢ 1oe (v) @mwm

Q@mmm\ /) | el | xog e [

0gese sumes piel4 eled (&) L 10E1 (W)
arae—L. souelajey peld eied () | uopos||og wiod [EE ¥ —|PoEse

PIld B1B(104 BPON 80IN0G 108188 (=) | ainjes uoneoddy & w m/
§[00 | W N MaIA Wwio4 MOPUIAA vese
SMOpuUL 1) -
wio4 Joelx3 <mm %m I %%w wamasd | suiog sojydei ®uopng opey @ (8ge (wjxog oeyd[d
wio4 uonng O xoge] [Jlegssaboidas ofew g uopngm Hed 8,
a0 % E E E opis 4 xog s (Jrog oquon D “HIOm | wopu
% |@|= Jspiing IN9 W
g¢ b4 mgm\

US 9,454,625 B2

Sheet 39 of 43

Sep. 27, 2016

U.S. Patent

6¢€ b4
pozileulq
2INONIIS Eleq
. |opoy uonedljddy
¢aInesad |[9pop
sop NYowednddy ppy P
Q096€ 086¢
sbumag aines
[2POW |9pojy uojes)|day
uoneaddy SHIp3 19N
Y /\./ 1
q0s6e e096e
SeTES S "
POy UOEeD!
aImon.g eleq [P LA_D_ ‘so,m_c_ >_> v
uopeaday sBunes Aedsig
pue sulwg)eq
,\me@m uoneaiddy
sj08(eg 488
sainjesd ~
|[9pojy uojed|ddy
sj08(6S Jes
N Suo|
neaydd
q0£6¢ e0r6e SIS Eieq 10 nUB >_m_gm_m_
uojea|ddy pue suIWIRQq
SNz ~
2.In}on.1S BlEQ [apoj uonedl|ddy e
uopedyddy 10 nusy Aeidsiq qo0L6¢ 0lec
pue auIlWlsleg
/\/ ues
B0E6E

U.S. Patent Sep. 27, 2016 Sheet 40 of 43 US 9,454,625 B2

Fig 40
4000
(7{\ Application WizarcK = 8)
4001 Select Application & 2>

D @ Electric Motor 4002
> 1 [| Fuel Cell Stack
Ll _p ») Loudspeaker 4004

4005| | p 4 wWaveguide _,J

N
(@]
o
w

k~_[> s Mixer 4006
40071 | p 33 Multi-Tube Heat Exchanger

k-—p @ Plasma Reactor 4008
4009

K b P Pressurized Pipe System
—— b %Thermal Actuator

US 9,454,625 B2

Sheet 41 of 43

Sep. 27, 2016

U.S. Patent

¥ Bl
ociy
09L¥ \/\
// L4 deH | @
GyeEdL = ¢

[wriluswaoe|dsi sepuedold | |
L S)insey a | ¢4 oweusy | ® | goyp
u [wnlopz | 7 uone|nwIg uny mlk

Ovly :pbus) Joyenoy Aewosg atepdn | ¥ |gynsoy g 4 @_‘v

6 (1 10Ny F——
\ yyBua Jojenjoy 4 | 100) Slaraos 5 7
2 PELEE e
(84 00Lb

ainjead uonedlddy

US 9,454,625 B2

Sheet 42 of 43

Sep. 27, 2016

U.S. Patent

|———————— > ainjea uoiesijddy

> [epon pappaqu] uonesyddy € - -

(A4
/

_
_
_
I
I
_
I
! _
e ym— L ainjee uonealdd _
|<<80ueISuI>>| yeed otealidcv 0 |
I _ _
| [c0cy [
_ _ _
_I] ainjea uoneo|ddy k _
I“ <<30UeIsul>> T 0 _
I _
I I
_ _
I I
. [opopy uonesiddy — -
<<Adoo>>
M
LOcy

US 9,454,625 B2

Sheet 43 of 43

Sep. 27, 2016

U.S. Patent

e b1

alsy] aly

saousnbag
uoRaY $$820.d

7
£0¥

s8ouanbag
UORSY PIyD
alay] aly

8ousnbag
a1n%ex3
A
[A057
saouenbag
»| uoioy s583014
~
LOEY
~
osey BOZEY WoI4

254
01

seousnhag INONAS EJed
UoIjaY 559901 saisAydiyniy
\/\
0cEd /\o/,‘mv
Jejpidia| ainjons Eje
Ojul 8INjoNAS [opopy
Bjeq peo] uoljealddy
~ (N
eocer qozey
_%o_D_ JNONAG ele
uojedljody 3POJY
auiwReq uoned|day
\/\
BO0LEY /mw;v
vels

US 9,454,625 B2

1
SYSTEMS AND METHODS FOR CREATING
APPLICATION INTERFACES FOR
FORMING AND SOLVING PROBLEMS IN A
MODELING SYSTEM

CROSS-REFERENCE TO RELATED
APPLICATIONS

This application is a continuation of U.S. patent applica-
tion Ser. No. 13/835,091, filed Mar. 15, 2013, now allowed,
which claims priority to and the benefits of U.S. Provisional
Patent Application No. 61/681,613, filed on Aug. 10, 2012,
and U.S. Provisional Application No. 61/740,149, filed Dec.
20, 2012, the disclosures of which are each hereby incor-
porated by reference herein in their entireties.

FIELD OF THE INVENTION

The present invention relates generally to systems and
methods for modeling and simulation, and more particularly,
to creating application interfaces for forming and solving
problems in a modeling system.

BACKGROUND

Computer design systems are used to develop product
designs and may include graphical user interfaces. Com-
puter design systems can be complemented with packages
analyzing a single aspect of a design, such as, structural
analysis in conjunction with computer-aided design systems.
It would be desirable to have design systems that can operate
in more complex environments.

SUMMARY OF THE INVENTION

According to one aspect of the present disclosure, an
apparatus for generating an application data structure
includes a physical computing system comprising one or
more processors, one or more user input devices, a display
device, and one or more memory devices. At least one of the
one or more memory devices includes executable instruc-
tions for generating an application data structure. The
executable instructions cause at least one of the one or more
processors to perform, upon execution, the acts of embed-
ding a multiphysics model data structure for a physical
system in an application data structure. The embedded
multiphysics model data structure includes at least one
modeling operation for the physical system. One or more
application features are determined, via at least one of said
one or more processors, to add to the application data
structure. The one or more application features are associ-
ated with a model of the physical system. First data is added,
via at least one of the one or more input devices, represent-
ing at least one form feature for at least one of the one or
more application features for the model of the physical
system. Second data is added, via at least one of the one or
more input devices, representing at least one action feature
for at least one of the one or more application features for the
model of the physical system. The second data representing
the at least one action feature is associated with the least one
modeling operation for the physical system to define a
sequence of operations for modeling the physical system.
The application data structure is updated. The updated
application data structure includes the added first data, the
added second data, and the associating defining the sequence
of operations. The updated application data structure is
stored on at least one of the one or more memory devices.

10

15

20

25

30

35

40

45

50

55

60

65

2

According to another aspect of the present disclosure, a
method executed in a computer system with one or more
physical computing devices is configured to generate a
modified application data structure to model a physical
system. The method comprises the acts of embedding, via
one or more physical computing devices, a multiphysics
model data structure in an application data structure stored
in one or more memory devices. The embedded multiphys-
ics model data structure includes at least one multiphysics
modeling operation for the physical system being modeled.
One or more application features are determined, via at least
one of the one or more physical computing devices, to add
to the application data structure. The one or more application
features are associated with the physical system. Application
data is acquired, via at least one of the one or more physical
computing devices, representing the one or more determined
application features. The application data include form data
representing at least one form feature and action data rep-
resenting at least one action feature for modeling the physi-
cal system. A modified application data structure is formed
including the acquired application data. The modified appli-
cation data structure is stored on at least one of the one or
more memory devices. The action data representing the at
least one action feature is associated with the least one
modeling operation for the physical system defined in the
embedded multiphysics model data structure. The associa-
tion between the action data and the at least one modeling
operation defines a sequence of operations for modeling said
physical system.

According to yet another aspect of the present disclosure,
a system generates a modified application data structure. The
system comprises one or more physical memory devices,
one or more display devices, one or more user input devices,
and one or more processors configured to execute instruc-
tions stored on at least one of the one or more physical
memory devices. The instructions cause at least one of the
one or more processors to perform the acts comprising
embedding, via one or more physical computing devices, a
multiphysics model data structure in an application data
structure stored in one or more memory devices. The embed-
ded multiphysics model data structure includes at least one
multiphysics modeling operation for the physical system
being modeled. One or more application features are deter-
mined, via at least one of the one or more physical com-
puting devices, to add to the application data structure. The
one or more application features are associated with the
physical system. Application data representing the one or
more determined application features is acquired, via at least
one of the one or more physical computing devices. The
application data includes form data representing at least one
form feature and action data representing at least one action
feature for modeling the physical system. A modified appli-
cation data structure is formed including the acquired appli-
cation data. The modified application data structure is stored
on at least one of the one or more memory devices. The
action data representing the at least one action feature is
associated with the least one modeling operation for the
physical system defined in the embedded multiphysics
model data structure. The association between the action
data and the at least one modeling operation defines a
sequence of operations for modeling the physical system.

According to another aspect of the present disclosure, a
method executed in a computer system includes one or more
processors configured to generate an application model data
structure to model a physical system. The method comprises
the acts of determining, via one or more processors, a
plurality of applications for modeling one or more physical

US 9,454,625 B2

3

systems. The plurality of applications are defined by appli-
cation data stored in one or more application data structures.
A list of the plurality of applications is displayed in one or
more graphical user interfaces. A first input indicative of a
selection of at least one of the plurality of applications is
received. One or more application features are determined,
via at least one of the one or more processors, for the
selection of at least one of the plurality of applications. The
one or more application features are represented as appli-
cation data defined in and retrieved from at least one of the
one or more application data structures. The determined
application feature are displayed in at least one of the one or
more graphical user interfaces. A second input indicative of
a selection of at least one of the application features is
received. One or more settings for the selection of at least
one of the application features is determined via at least one
of the one or more processors. The one or more settings are
associated with parameters for the modeling of the one or
more physical systems. Edit fields including at least one of
the one or more settings are displayed via at least one of the
one or more graphical user interfaces. At least one of the edit
fields is selected. Edits to said one or more setting included
in the selected at least one edit field are receiving via one or
more user input devices. An application model data structure
is generated, via at least one of said one or more processors,
that includes the received edits to the at least one or more
settings to the at least one or more application features
retrieved from the one or more application data structures.

According to further aspects of the present disclosure, one
or more non-transitory computer readable media are
encoded with instructions, which when executed by one or
more processors associated with a design system, a simula-
tion system, or a modeling system, causes at least one of the
one or more processors to perform the above methods.

Additional aspects of the present disclosure will be appar-
ent to those of ordinary skill in the art in view of the detailed
description of various embodiments, which is made with
reference to the drawings, a brief description of which is
provided below.

BRIEF DESCRIPTION OF THE DRAWINGS

Features and advantages of the present disclosure will
become more apparent from the following detailed descrip-
tion of exemplary embodiments thereof taken in conjunction
with the accompanying drawings in which:

FIG. 1 illustrates an exemplary aspect of a computer
system.

FIG. 2 illustrates an exemplary aspect of systems that may
reside and be executed in one of the hosts of FIG. 1.

FIG. 3 illustrates an exemplary aspect of a graphical user
interface for specifying space dimensions.

FIG. 4 illustrates an exemplary aspect of a graphical user
interface for specifying physics interface(s).

FIG. 5 illustrates an exemplary aspect of a graphical user
interface for specifying study type(s).

FIG. 6 illustrates an exemplary aspect of a graphical user
interface for specifying physical properties for an exemplary
physics interface.

FIG. 7 illustrates an exemplary aspect of a graphical user
interface for modifying partial differential equation(s).

FIG. 8 illustrates an exemplary aspect of a graphical user
interface for setting material propert(ies) for a domain in a
multiphysics model.

FIG. 9 illustrates an exemplary aspect of a graphical user
interface for setting physical boundary condition(s) for an
exemplary physics interface.

20

30

40

45

55

4

FIG. 10 illustrates an exemplary aspect of a graphical user
interface for modifying partial differential equation bound-
ary condition(s).

FIG. 11 illustrates an exemplary aspect of a graphical user
interface for a setting window associated with a study step
used to solve a study including partial differential equations.

FIG. 12 illustrates an exemplary model tree including a
primary node with secondary nodes.

FIGS. 13-15 are flowcharts of steps for an exemplary
aspect for specifying and solving systems of partial differ-
ential equations in a multiphysics modeling system.

FIG. 16 illustrates a flowchart for one exemplary aspect of
a method for creating an application data structure.

FIG. 17 illustrates an exemplary unified modeling lan-
guage (UML) object diagram of instance level relationships
between features in an application data structure.

FIG. 18 shows an exemplary aspect of an application tree
for adding a multiphysics model to an application data
structure.

FIG. 19 illustrates an exemplary aspect of an application
tree for adding an application feature to an application data
structure.

FIG. 20 illustrates an exemplary aspect of a settings
window for an application feature.

FIG. 21 illustrates an exemplary application tree for
adding an input declaration to an application data structure.

FIG. 22 illustrates an exemplary application tree for
adding a panel input form to an application data structure.

FIG. 23 illustrates an exemplary aspect of a settings
window for a section panel form collection.

FIG. 24 illustrates an exemplary aspect of an application
tree for adding a text input form to an application data
structure.

FIG. 25 illustrates an exemplary aspect of a settings
window for a text input form.

FIG. 26 illustrates an exemplary aspect of an application
tree for adding an activation condition to an application data
structure.

FIG. 27 illustrates an exemplary aspect of an application
tree for adding a panel collection form and a data display
output form to an application data structure.

FIG. 28 illustrates an exemplary aspect of a settings
window for a data display output form.

FIG. 29 illustrates an exemplary aspect of an application
tree for adding an action feature to an application data
structure.

FIG. 30 illustrates an exemplary aspect of a settings
window for an action feature.

FIG. 31 illustrates an exemplary aspect of an application
tree for adding a menu input form to an application data
structure.

FIG. 32 illustrates an exemplary aspect of a graphical user
interface in an application builder module for building a
mixer application data structure.

FIG. 33 illustrates an exemplary aspect of an application
feature tree for a vessel application feature.

FIG. 34 illustrates an exemplary aspect of an application
feature tree for am impeller application feature.

FIG. 35 illustrates an exemplary schematic description of
the geometry and selection operations that may be imple-
mented by a geometry subroutine.

FIG. 36 illustrates an exemplary application tree for a
waveguide application according to some aspects for creat-
ing an application data structure.

FIG. 37 illustrates an exemplary aspect of a model tree
and a waveguide geometry created upon execution of a
waveguide application.

US 9,454,625 B2

5

FIG. 38 illustrates an exemplary aspect of an application
tree for a waveguide application.

FIG. 39 illustrates an exemplary flowchart of method
steps for interpreting an application data structure.

FIG. 40 illustrates an exemplary aspect of a selection
window.

FIG. 41 illustrates an exemplary aspect of an application
model tree window.

FIG. 42 illustrates an exemplary unified modeling lan-
guage object diagram of instance level relationships between
features of an application model data structure.

FIG. 43 illustrates an exemplary flowchart of method
steps for interpreting an application model data structure.

While the present disclosure is susceptible to various
modifications and alternative forms, specific embodiments
have been shown by way of example in the drawings and
will be described in detail herein. It should be understood,
however, that the invention is not intended to be limited to
the particular forms disclosed. Rather, the invention is to
cover all modifications, equivalents, and alternatives falling
within the spirit and scope of the invention as defined by the
appended claims.

DETAILED DESCRIPTION

While this invention is susceptible of embodiment in
many different forms, there is shown in the drawings and
will herein be described in detail preferred aspects of the
invention with the understanding that the present disclosure
is to be considered as an exemplification of the principles of
the invention and is not intended to limit the broad aspect of
the invention to the aspects illustrated. For purposes of the
present detailed description, the singular includes the plural
and vice versa (unless specifically disclaimed); the words
“and” and “or” shall be both conjunctive and disjunctive; the
word “all” means “any and all”; the word “any” means “any
and all”; and the word “including” means “including without
limitation.”

Exemplary methods and systems for creating or forming
an application data structure is described. It is contemplated
that the method may be executed as part of an application
interface builder module that may be a standalone system
that interfaces or connects with an engineering analysis
system, such as a multiphysics modeling system. It is also
contemplated that the application interface builder module
may be a one of a plurality of modules or routines that
comprise an engineering analysis system. The application
interface builder module can include or be connected with a
user interface, such as a graphical user interface, that secks
inputs and displays instructions to a user of the application
interface builder. The application interface builder module
for creating an application data structure is executed on one
or more processors associated with various computer sys-
tems described elsewhere herein including, among other
things, the computer systems and apparatus described for the
multiphysics modeling system.

It is contemplated to be desirable for the application
interface to be available in, or accessible to, an engineering
analysis system, such as a multiphysics modeling system, to
generate a model described in a model object (e.g., a model
data structure including data fields and methods along with
their interactions) in accordance with an object-orient pro-
gramming language (e.g., C++, C#, Java®).

In some aspects, an application interface for creating or
forming an application data structure may be represented as
a branch containing nodes describing a multiphysics mod-
el’s setting, such as describes elsewhere herein for aspects of

25

40

45

50

6

multiphysics modeling systems using model tree features.
The branch and nodes may be included in a graphical user
interface and the described settings may include, among
other things, domain settings and boundary conditions.

It is further contemplated that an application interface
builder may allow a user to name the application interface.
For example, the name of an application interface may be
descriptive of the application it defines and it may also be
displayed in the user interface (e.g., the model tree) in the
engineering analysis system, such as a system implementing
multiphysics simulations. The name may be changed by a
user of the system or by the multiphysics system itself in the
situation where several application interfaces of the same
type are added to or available to a multiphysics model.

Systems for computer aided engineering, such as finite
elements analysis systems, finite volume systems, compu-
tational fluid dynamics (CFD) systems, and multiphysics
modeling systems are often equipped with a graphical user
interface where a user may set up and run a simulation. Such
processes or systems may contain a number of different user
interfaces for different types of simulations, such as CFD,
heat transfer, electromagnetics, or structural mechanics
simulations.

Methods for setting up and solving multiphysics problems
and other modeling systems are described herein, for
example, in FIGS. 3-15, and are also described in U.S. Pat.
No. 8,219,373, issued Jul. 10, 2012; U.S. Pat. No. 7,623,991,
issued Nov. 24, 2009; U.S. Pat. No. 7,519,518, issued Apr.
14, 2009; U.S. Pat. No. 7,596,474, issued Sep. 29, 2009; and
U.S. Patent Application Publication No. 2012/0179426,
published Jul. 12, 2012. Ser. No. 13/184,207, filed Jul. 15,
2011, each of which are hereby incorporated by reference
herein in their entireties. These published patent documents
describe, for example, method for setting up and executing
multiphysics simulations, including several coupled physi-
cal phenomena, by receiving inputs in the form of physical
properties that may be expressed in terms of physical
quantities. In addition, the above-referenced U.S. patents
and patent application disclose methods for setting up prob-
lems using physical properties, physical quantities, and
physical phenomena described using partial differential
equations (PDEs). These published patent documents pro-
vide for methods and systems for setting up and solve
multiphysics problems using predefined application modes
that are referred to herein as physics interfaces. Components
of the physics interfaces can include parameters, variables,
physical properties, physical quantities, boundary and initial
conditions, and solvers with settings and menus. These
settings and menus may be tailored for the specific physics
instead of using the generic mathematical settings. In addi-
tion, these published patent disclosures also describe meth-
ods for PDE modes, also referred to as PDE interfaces, in the
cases where predefined physics interfaces are not available.
The use of the generic PDE modes and PDE interfaces for
setting up multiphysics problems requires knowledge about
the description of physical properties, physical quantities,
and physical phenomena in terms of PDEs.

It is contemplated that systems and methods operable to
or adapted to generate an application data structure, based on
a multiphysics model, would be desirable and provide
various computational advantages for engineering design
systems, including modeling and simulation systems. The
methods and systems for generating the application data
structure can be implemented on dedicated graphical user
interface(s) in an application builder module configured or
adapted for accessing features and feature settings for the
multiphysics model. Such a graphical user interface can also

US 9,454,625 B2

7

give access to methods for generating a data structure
representing an application using the existing settings for the
multiphysics model. The application data structure can fur-
ther be interpreted via another system or method that makes
the application data structure accessible from the graphical
user interface in a multiphysics modeling system for gen-
erating an application model data structure and a multiphys-
ics model data structure to allowing the execution of simu-
lations.

Throughout this disclosure, various non-limiting exem-
plary aspects of systems are described herein that include
methods, executed on processing unit(s), which are acces-
sible via a graphical user interface. The methods include
instructions for generating application data structures, appli-
cation model data structures, and other type of data struc-
tures for modeling physical systems. It is contemplated that
the generated data structures can be applied or associated
with an engineering analysis system (e.g., multiphysics
modeling system), where the data structure(s) may be built
and applied by a system user.

In the exemplary aspect of a multiphysics modeling
system, a first interpreter module can be provided that
receives inputs in the form of physical properties in term of
physical quantities, and then, generates a model object. A
model object may include the algorithms and data structures
for the model and may be further used to represent the
model. The model object can further include methods for
setting up and executing sequences of operations to create
geometry, meshes, and solutions for the model.

Physical computing devices embodying engineering
analysis systems may be configured with one or more
graphical user interfaces that allow a system user to input
and execute simulations and build application data struc-
tures. The computer systems may include some of the
non-limiting exemplary routines or methods described
above and can further include different interfaces for differ-
ent types of simulations. Different user interfaces may, for
example, be provided for fluid flow, heat transfer, electro-
magnetic, and/or structural mechanics simulations. Simula-
tions and associated interfaces for other engineering or
physics phenomena are also contemplated for computer-
aided engineering analysis systems.

A system having a dedicated graphical user interface for
generating or building an application data structure and an
application model data structure are contemplated in some
aspects of the present disclosure. For example, a computer
system may include a graphical user interface for defining
the parameters, forms, features, actions, variables, physical
properties, physical quantities, and/or physics interface fea-
tures for a desired physics phenomena associated with a
desired analysis or simulation. The graphical user interface
can allow access to routines or methods that then generate
the application data structure. The generated data structure
may then be interpreted or processed by a routine or method
configured to create the application model data structure and
to make the application interface accessible from other
graphical user interface(s) associated with, for example, an
engineering analysis system such as a multiphysics model-
ing system. It is contemplated that the routines or methods
for these operations can be executed locally on, and/or
remotely through network connection(s) to, one or more
processing unit(s) executing the engineering analysis sys-
tems.

Computer systems may be used for performing the dif-
ferent tasks described in the present disclosure. One aspect
for using a computer system includes executing one or more
computer programs, including engineering analysis systems

20

35

40

45

55

8

and methods, stored on computer readable media (e.g.,
temporary or fixed memory, magnetic storage, optical stor-
age, electronic storage, flash memory, other storage media).
A computer program may include instructions which, when
executed by a processor, perform one or more tasks. In
certain embodiments, a computer system executes machine
instructions, as may be generated, for example, in connec-
tion with translation of source code to machine executable
code, to perform modeling and simulation, and/or problem
solving tasks. One technique, which may be used to model
and simulate physical phenomena or physical processes, is
to represent various physical properties and quantities, of the
physical phenomena or physical processes being modeled
and simulated, in terms of variables and equations or in other
quantifiable forms that may be processed by a computer
system. In turn, these equations or other quantifiable forms
may be solved by a computer system configured to solve for
one or more variables associated with the equation, or the
computer may be configured to solve a problem using other
received input parameters.

It is contemplated that computer programs for modeling
and simulating physical phenomena or physical processes
may provide many advantages particularly as the complexity
of the physical phenomena or physical processes being
modeled and simulated increases. For example, in certain
embodiments a user can combine one or more physical
phenomena into a multiphysics model, as part of, for
example, an engineering analysis. To further illustrate this
example, a user may combine phenomena described by
chemical kinetics and fluid mechanics, electromagnetic phe-
nomena and heat transfer, structural mechanics and fluid
flow, or other physics phenomena. Such multiphysics mod-
els may also involve multiple physical processes. For
example, a process may be combined that includes an
amplifier powering an actuator, where both the amplifier and
the actuator are a part of one multiphysics model. Mul-
tiphysics modeling can also include solving coupled systems
of partial differential equations (PDEs).

It is contemplated that computer systems on which mod-
eling systems operate, such as the modeling systems
described herein, can include networked computers or pro-
cessors. In certain embodiments, processors may be oper-
ating directly on the modeling system user’s computer, and
in other embodiments, a processor may be operating
remotely. For example, a user may provide various input
parameters at one computer or terminal located at a certain
location. Those parameters may be processed locally on the
one computer or they may be transferred over a local area
network or a wide area network, to another processor,
located elsewhere on the network that is configured to
process the input parameters. The second processor may be
associated with a server connected to the Internet (or other
network) or the second processor can be several processors
connected to the Internet (or other network), each handling
select function(s) for developing and solving a problem on
the modeling system. It is further contemplated that the
results of the processing by the one or more processors can
then be assembled at yet another server or processor. It is
also contemplated that the results may be assembled back at
the terminal or computer where the user is situated. The
terminal or computer where the user is situated can then
display the solution of the multiphysics modeling system to
the user via a display (e.g., a transient display) or in hard
copy form (e.g., via a printer). Alternatively or in addition,
the solution may be stored in a memory associated with the

US 9,454,625 B2

9

terminal or computer, or the solution may be stored on
another server that the user may access to obtain the solution
from the modeling system.

It is contemplated that in certain embodiments a product
or process may be in the development or feasibility stage
where it is being designed or analyzed. The product or
process being developed or analyzed may need to be
assessed for use in complex environment(s) involving sev-
eral physical properties and quantities. It can be desirable to
solve complex multiphysics problems by systematically
varying parametric and geometric features in a computer-
based design system. Other desirable features may include,
for example, having a computer-based system for solving
complex multiphysics problems in which the settings for the
physical properties and boundary conditions, located in a
memory and used to form multiphysics models and/or solve
multiphysics problems, can be accessed directly from the
design system.

Referring now to FIG. 1, an exemplary aspect of a
computer system is illustrated that may be used with the
methods described elsewhere herein including modeling
systems and systems for generating application data struc-
tures. The computer system 110 includes a data storage
system 112 connected to host systems 114a-114n through
communication medium 118. In this embodiment of the
computer system 110, the “n” hosts 114a-114» may access
the data storage system 112, for example, in performing
input/output (I/O) operations. The communication medium
118 may be any one of a variety of networks or other type
of communication connections as known in the modeling
and computer simulation field. For example, the communi-
cation medium 118 may be the Internet, an intranet, or other
network connection by which the host systems 114a-114%
may access and communicate with the data storage system
112, and may also communicate with others included in the
computer system 110, including without limitation systems
based on various forms of network communications (e.g.,
fiber optic, wireless, Ethernet).

Each of the host systems 114a-114» and the data storage
system 112 included in the computer system 110 may be
connected to the communication medium 118 by any one of
a variety of connections as may be provided and supported
in accordance with the type of communication medium 118.
The processors included in the host computer systems
1144-114% or a data manager system may be any one of a
variety of commercially available single or multi-processor
system, such as an Intel-based processor, IBM mainframe,
server, or other type of commercially available processor
able to support incoming traffic in accordance with each
particular embodiment and application.

It should be noted that the particulars of the hardware and
systems included in each of the host systems 114a-114#, as
well as those components that may be included in the data
storage system 112 are described herein in more detail, and
may vary with each particular embodiment. Each of the host
computers 114a-114n, as well as the data storage system
112, may all be located at the same physical site, or,
alternatively, may also be located in different physical
locations. Examples of the communication medium that may
be used to provide the different types of connections
between the host computer systems, the data manager sys-
tem, and the data storage system of the computer system 110
may use a variety of different communication protocols such
as SCSI, ESCON, Fiber Channel, or functional equivalents
that are known to those skilled in the computer modeling and
simulation field. Some or all of the connections by which the
hosts and data storage system 112 may be connected to the

10

15

20

25

30

35

40

45

50

55

60

65

10

communication medium 118 may pass through other com-
munication devices, such as a Connectrix or other switching
equipment that may exist, both physical and virtual, such as
a phone line, a repeater, a multiplexer or even a satellite.

Each of the host computer systems may perform different
types of data operations, such as storing and retrieving data
files used in connection with an application executing on one
or more of the host computer systems. For example, a
computer program may be executing on the host computer
1144 and store and retrieve data from the data storage system
112. The data storage system 112 may include any number
of a variety of different data storage devices, such as disks,
tapes, and the like in accordance with each implementation.
As will be described in following paragraphs, methods may
reside and be executing on any one of the host computer
systems 114a-114n. Data may be stored locally on the host
system executing the methods, as well as remotely in the
data storage system 112 or on another host computer system.
Similarly, depending on the configuration of each computer
system 110, method as described herein may be stored and
executed on one of the host computer systems and accessed
remotely by a user on another computer system using local
data. A variety of different system configurations and varia-
tions are possible then as will be described in connection
with the embodiment of the computer system 110 of FIG. 1
and should not be construed as a limitation of the techniques
described elsewhere herein.

Referring now to FIG. 2, an exemplary aspect of a
modeling system 219 is illustrated that may reside, for
example, on a single computer or in one of a plurality of host
computer systems (e.g., host computers 114a-1147). The
modeling system may be divided into several components.
One exemplary aspect of the system may include a GUI
module 220, a Modeling and Simulation module 222, and a
Data Storage and Retrieval module 224. The GUI module
220 can provide for interactions with system users. The
Modeling and Simulation module 222 can provide an ability
to manage and perform a multiphysics simulation. The Data
Storage and Retrieval module 224 can provide an ability to
load and save the model in a file, and to load and store other
types of files which may be used during the simulation or
may be used as input or output to the simulation.

The GUI module 220 may communicate with the Mod-
eling and Simulation module 222 by sending and receiving
commands. The act of sending and receiving commands
may be performed through an application programming
interface (“API”) or other similar components. In one aspect
of the system, the API may be object oriented and mix data
and function calls within the same structure. In another
aspect of the system, the API may use a data structure that
is separate from function calls.

It is contemplated that in certain aspects of the present
disclosure components of the multiphysics modeling system
may reside on different host computer systems. For example,
the GUI module 220 may reside on a personal computer host
and the Modeling and Simulation module 222 may reside on
a server computer host. It is further contemplated that the
Data Storage and Retrieval module 224 may reside on either
the personal computer host or the server computer host, or
yet another separate computer host. If the computer hosts are
not identical, the API can be configured to use a computer
network to communicate between hosts. In one embodiment,
an object oriented API may be configured to send data and
method calls over the computer network or in another
embodiment send data and function calls between the com-
ponents over a computer network. The API may also be able
to handle a Data Storage and Retrieval module 224 which

US 9,454,625 B2

11

may be located either on the host of the GUI module 220 or
the Modeling and Simulation module 222, or on a separate
host. In each of those cases, the Data Storage and Retrieval
module 224 may be configured to load and store files on
each of those hosts.

It is contemplated that in certain aspects, the system 219
may include, or be configured with, operating systems such
as Windows 8, Mac OS, i0S, Android, Chrome OS, and the
like, or system components other than what is described and
represented in the modeling system 219 illustrated in FIG. 2.
In the exemplary aspect illustrated in FIG. 2, Libraries 226
and the User Data Files 228 can be stored locally within the
host computer system. It is further contemplated that in
certain aspects, the Libraries 226 and/or User Data Files
228, as well as copies of these, may be stored in another host
computer system and/or in the Data Storage System 112 of
the computer system 110. However, for simplicity and
explanation in paragraphs that follow, it may be assumed in
a non-limiting manner that the system 219 may reside on a
single host computer system such as 114a with additional
backups, for example, of the User Data Files and Libraries,
in the Data Storage System 112.

In certain aspects of the present disclosure, portions of the
modeling system 219, such as the GUI module 220, the
Modeling and Simulation module 222, the Data Storage and
Retrieval module 224, and/or the Libraries 226 may be
included or executed in combination with commercially
available system package(s). These components may oper-
ate on one of the host systems 114a¢-114#, and may include
one or more operating systems, such as, Windows XP®,
Windows 7, Windows 8, Windows HPC Server 2008 R2,
Unix®, Linux®, Mac OS®, i0S, Chrome® OS, Android®,
and the like. It is further contemplated that the modules of
the modeling system 219 may written in any one of a variety
of computer programming languages, such as, C, C++, C#,
Java®, or any combination(s) thereof, or other commercially
available programming languages.

It is contemplated that the GUI module 220 may display
GUI windows in connection with obtaining data for use in
performing modeling, simulation, and/or other problem
solving for one or more processes and/or physics phenom-
ena under consideration by a system user. The one or more
processes and/or phenomena may be assembled and solved
by the Modeling and Simulation module 222. That is, user
data may be gathered or received by the system using
modules, such as the GUI module 220, and subsequently
used by the Modeling and Simulation module 222. There-
after, the data may be transtferred or forwarded to the Data
Storage and Retrieval module 224 where the user-entered
data may be stored in a separate data structure (e.g., User
Data Files 228). It is contemplated that other data and
information may also be stored and retrieved from a separate
data structure, such as Libraries 226, which may be used by
the Modeling and Simulation module 222 or in connection
with the GUI module 220.

The various data files that may be associated with a
modeling system, such as User Data Files 228 and the
Libraries 226, may be stored in any one of a variety of data
file formats in connection with a file system used in the host
computer system or in the Data Storage System 112. In
certain aspects, the system 219 may use any one of a variety
of database packages in connection with the storage and
retrieval of data. The User Data files 228 may also be used
in connection with other simulation and modeling systems.
For example, the User Data files 228 may be stored in a
format that may also be used directly or indirectly as an
input to any one of a variety of other modeling systems. In

10

15

20

25

30

35

40

45

50

55

60

65

12

certain aspects, data may be imported and/or exported
between the multiphysics modeling system and another
system. The format of the data may be varied or customized
in accordance with each of the system(s) as well as in
accordance with additional functionalities that each of the
system(s) may include.

It is contemplated that the systems and methods described
herein may be used for combining physics interfaces that
model different physical phenomena or processes. The com-
bination of a plurality of physics interfaces can be referred
to as a multiphysics model. Properties of the physics inter-
faces can be represented by PDEs that may be automatically
combined to form PDEs describing physical quantities in a
coupled system or representation. The coupled PDEs may be
displayed, for example, in an “Equation view” that allows
for the coupled PDEs to be modified and used as input into
a solver. It is also contemplated that the PDEs may be
provided to the solver either independently as one PDE or a
system of PDEs, describing a single phenomenon or process,
or as one or several systems of PDEs describing several
phenomena or processes.

In certain aspects of the present disclosure, a multiphysics
modeling system can provide an ability to combine physics
interfaces that model physical properties through one or
more GUIs that allow a user to select one or more physics
interfaces from a list. In addition to displaying physics
interfaces names, it is further contemplated that variable
names for physical quantities may be selected through a
GUIL. It is contemplated that the physics interfaces may have
different formulations that depend on a “Study” settings
feature, which is described in more detail elsewhere herein.

It is further contemplated that it may be desirable for a
multiphysics modeling system to provide the ability to
access predefined combinations of several physics phenom-
ena for defining multiphysics model(s). The predefined
combinations may be referred to as multiphysics interfaces,
which similar to the physics interfaces, may also have
different formulations that depend on a study settings fea-
ture.

It is contemplated that in certain aspects of the present
disclosure physical properties can be used to model physical
quantities for component(s) and/or process(es) being exam-
ined using the modeling system, and the physical properties
can be defined using a GUI that allow the physical properties
to be described as numerical values. In certain aspects,
physical properties can also be defined as mathematical
expressions that include one or more numerical values,
space coordinates, time coordinates, and/or the actual physi-
cal quantities. In certain aspects, the physical properties may
apply to some parts of a geometrical domain, and the
physical quantity itself may be undefined in the other parts
of the geometrical domain. A geometrical domain or
“domain” may be partitioned into disjoint subdomains. The
mathematical union of these subdomains forms the geo-
metrical domain or “domain”. The complete boundary of a
domain may also be divided into sections referred to as
“boundaries”. Adjacent subdomains may have common
boundaries referred to as “borders”. The complete boundary
is the mathematical union of all the boundaries including, for
example, subdomain borders. For example, in certain
aspects, a geometrical domain may be one-dimensional,
two-dimensional, or three-dimensional in a GUI. However,
as described in more detail elsewhere herein, the solvers
may be able to handle any space dimension. It is contem-
plated that through the use of GUIs in one implementation,

US 9,454,625 B2

13

physical properties on a boundary of a domain may be
specified and used to derive the boundary conditions of the
PDEs.

Additional features of a modeling system, such as feature
that may be found in the Modeling and Simulation module
222, may provide for automatically deriving a system of
PDE’s and boundary conditions for a multiphysics model.
This technique can include merging the PDEs of the plural-
ity of phenomena or processes, and may produce a single
system of coupled PDEs, also using coupling variables or
operators to couple processes in different coordinate sys-
tems, and may perform symbolic differentiation of the
system of PDEs with respect to all the dependent variables
for later use by the solver.

It is contemplated that in certain aspects, a coupled system
of PDEs may be modified before being differentiated and
sent to the solver. The modification may be performed using
a settings window included in a GUI displaying the com-
bined PDEs in an “Equation view”. When the system of
PDEs is modified in this way, the settings for the corre-
sponding physical properties can become “locked”. The
properties may subsequently be unlocked by a user taking
certain action(s).

It is contemplated that certain aspects of the present
disclosure may include features for modeling one or more of
a plurality of engineering and scientific disciplines, includ-
ing, for example, acoustics, chemical reactions, diffusion,
electromagnetism, fluid mechanics, geophysics, heat trans-
fer, optics, plasma physics, quantum mechanics, semicon-
ductor physics, structural mechanics, wave propagation, and
the like. Certain aspects of a modeling system may involve
more than one of the foregoing disciplines and can also
include representing or modeling a combination of the
foregoing disciplines. Furthermore, the techniques that are
described herein may be used in connection with one or
more systems of PDEs.

It is contemplated that in certain aspects of the present
disclosure, system(s) of PDEs may be represented in gen-
eral, coefficient, and/or weak form. The coefficient form may
be more suitable in connection with linear or almost linear
problems, while the general and weak forms may be better
suited for use in connection with non-linear problems. The
system(s) being modeled may have one or more associated
studies, for example, such as stationary, time dependent,
eigenvalue, or eigenfrequency. In the aspects described
herein, a finite element method (FEM) may be used to solve
for the PDEs together with, for example, adaptive meshing,
adaptive time stepping, and/or a choice of a one or more
different numerical solvers.

It is contemplated that in certain aspects of the present
disclosure, a finite element mesh may include simplices
forming a representation of a geometrical domain. Each
simplex can belong to a unique subdomain, and a union of
the simplices can form an approximation of the geometrical
domain. The boundary of the domain may also be repre-
sented by simplices of the dimensions 0, 1, and 2, for
geometrical dimensions 1, 2, and 3, respectively.

It is further contemplated that a mesh representing a
geometry may also be created by an outside or external
application and may subsequently be imported for use into
the modeling system(s) described in the present disclosure.

The initial value of the solution process may be given as
numerical values, or expressions that may include numerical
values, space coordinates, time coordinates and the actual
physical quantities. The initial value(s) may also include
physical quantities previously determined.

10

15

20

25

30

35

40

45

50

55

60

65

14

The solution of the PDEs may be determined for any
subset of the physical properties and their related quantities.
Further, any subset not solved for may be treated as initial
values to the system of PDEs.

It is contemplated that it may be desirable for a user to
select a space dimension, combinations of physics, and a
type of study in a multiphysics modeling system using a
model wizard. The model wizard may take the user through
these selection steps and it may also allow for the combi-
nation of several space dimensions, several physics, and
several studies or study steps in a multiphysics model.

Referring now to FIG. 3, an exemplary aspect of a user
interface or GUI 330 is illustrated that may be used to
specify a space dimension 332 of a multiphysics model. The
model may be specified in coordinate systems of the space
dimensions including O dimensional (space independent,
only time dependent), 1-dimensional, 1-dimensional axi-
symmetric, 2-dimensional, 2-dimensional axisymmetric,
and 3-dimensional. It is further contemplated that a user may
also combine models involving several of the above men-
tioned coordinate systems in order to describe phenomena or
processes comprising multiple parts or scales.

Referring now to FIG. 4, an exemplary aspect of a user
interface or GUI 439 is illustrated that may be used to
specify a multiphysics model having a combination of more
than one phenomena or process(es) (e.g., acoustics, heat
transfer, structural mechanics). It is contemplated that each
phenomenon or process to be combined may correspond to
a physics interface. Through the use of the GUI 439, the
physics interfaces that are to be used in this combined
multiphysics model may be specified. Each physics interface
can be configured to model physical quantities in terms of
PDEs. The physical quantities may be represented either
directly as dependent variable(s) in the PDE, or by a relation
between the dependent variable and a variable representing
the physical quantity. The PDEs in this exemplary aspect
may be generally “hidden” (e.g., not made directly visible)
from the user through the use of GUIs. As discussed
previously, once several physics interfaces are combined
into one single model or a system of models, the model or
models may be referred to as a multiphysics model.

The GUI 439 also includes an exemplary list of physics
interfaces 440 (e.g., AC/DC, Electrochemistry, Radio Fre-
quency, Structural Mechanics) from which a user may select
in accordance with a user’s choice of space dimensions. To
add physics interfaces to a multiphysics model, the user
selects physics interfaces from the list and may specify that
these physics interfaces are to be included in a multiphysics
model. For example, the user may right-click and then select
context menu item “Add selected” 442 to add a physics
interface (e.g., Heat Transfer in Fluids) to a multiphysics
model. After selection, this physics interface is added to the
list of “Selected physics” 444 below the physics list in the
GUI 439. Physics interfaces may also be removed from the
list by selecting a “Remove selected” button 446.

Each physics interface in a multiphysics model is given a
unique name that may be used to identify the origin of the
variables in the multiphysics model. After adding a physics
interface to the “Selected physics™ list 446, a user may edit
the names of the dependent variables representing the physi-
cal quantities being solved for. For example, edits by a user
may result in a new name for a variable, such as, for
“Temperature” in the “Dependent variables” section 448 of
GUI 439.

It is contemplated that the selectable interfaces can also
include a mathematics interface 443 that is configured to
directly correspond to PDEs. In mathematics interface(s),

US 9,454,625 B2

15

quantities can be represented by the dependent variables for
the multiphysics model. It is contemplated that in certain
aspects each mathematics interface may have more than one
dependent variable. It is further contemplated that the num-
ber of dependent variables and the dimension of the system
of PDEs may be entered in the “Dependent variables”
section 448 in the GUI 439.

Referring now to FIG. 5, an exemplary aspect of a user
interface or GUI 549 is illustrated for specifying one or more
study types for a multiphysics model. In certain aspects of
the modeling system, an interface may include preset studies
that are associated with selected physics interfaces. The
interface may allow for customization of study steps where,
for example, the studies for each of the physics interfaces are
customized or some of the studies are preset (e.g., stationary,
time dependent) and others are customized (e.g., eigenfre-
quency). It is further contemplated that a study may combine
several study steps relevant for a simulation study of a
multiphysics model.

It is contemplated that in certain aspect of the present
disclosure, a study can determine the type of analysis that
may be done on a multiphysics model, such as stationary,
time-dependent, eigenvalue, and eigenfrequency. The study
may control the type of equation formulation used in a
multiphysics model, the type of mesh (e.g., selected from a
list of possible meshes), and/or the type of solvers that may
be used to solve the different studies or study steps in a
multiphysics model. In one exemplary aspect, a study may
comprise a stationary study step followed by a transient
study step. The study then formulates the equations, meshes,
and solvers for the stationary and time-dependent study
steps. A user may select a study from the studies list 550 and
then finish the model wizard steps by clicking the “Finish”
button 554.

It is contemplated that in certain aspects of the present
disclosure, multiphysics model data (e.g., selections made in
GUIs 330, 439, 549) may be communicated from the GUI
(e.g., 220) to the Data Storage and Retrieval Module (e.g.,
224) for storage in the User Data Files (e.g., 228). For
example, a multiphysics model, such as one generated via
model wizard steps previously described in FIGS. 3-5,
including geometry, materials, physics interfaces, mesh,
studies, and results, may be represented as a model tree in a
GUI. Selecting (e.g., left clicking on) a node in a model tree
may give a user access to the settings for the corresponding
operation represented by the node. Further selection (e.g.,
right-clicking) of a node may also give a user access to a
menu where a user may add properties and operations to the
corresponding node. These added properties and operations
may be represented as child nodes to the selected node.

It is contemplated that in certain aspects of the present
disclosure, the foregoing screen display(s) (e.g., GUI 330)
may be displayed by and/or included as part of the compo-
nent for the GUI module (e.g., 220) of a modeling system
(e.g., 219). It is further contemplated that a modeling system
is configured to include different types of physics interfaces,
including some that may be predefined and/or some that may
be user-defined. A predefined physics interface may be one
for which the interface properties are included in Libraries
(e.g., 226), and that may, for example, be available from a
vendor (e.g., a vendor may supply libraries including
defined systems of PDEs, analysis types, GUIs and the like
for a particular type of system, such as heat transfer). A
user-defined physics interface is configured to allow for
user-defined models or physics interfaces for which a user
may specify the PDEs, the quantities being modeled, and the
like. The user-defined model may be saved in a user-defined

10

15

20

25

30

35

40

45

50

55

60

65

16

library, such as a library included in the User Data files (e.g.,
228). Definitions and other data files associated with a
user-defined model may be stored in any one of a variety of
data formats, for example, similar to those of the Libraries
(e.g., 226). It is contemplated that the format and operation
may vary for the stored models and model parameters.

Referring now to FIG. 6, an exemplary aspect of a settings
window 659 is illustrated for physical property specification
of an exemplary physics interface (e.g., heat transfer in
solids). It is contemplated that each physics interface may
have one or several GUI settings windows customized to the
physics phenomena or process for which the physical prop-
erties associated with that physics interface may be speci-
fied. The physics interface and the settings for a physics
interface may be represented as nodes in a model tree. For
example, selecting (e.g., right-clicking on) a physics inter-
face node can open a form where a user can do one or more
tasks, such as adding domain properties to a physics inter-
face or a setting, renaming the node, or displaying properties
about the selected node.

Settings window 659 includes a domain list 660 that may
have one or more geometrical domains to which the physical
properties may apply. The domains may also be referred to
as subdomains. It is contemplated that a user may select
(e.g., via a mouse, keyboard, or other selection feature) one
or several subdomains by selecting directly from a graphical
representation of the geometrical domain in a graphics
window. It is also contemplated that in certain aspects, the
user may select domains from a predefined selection of
domains that represent a specific part of a component being
modeled in a multiphysics model.

The physical properties of the domains (or subdomains)
are specified in the settings window. As previously
described, the physical properties may be expressed in
different forms including being specified as numerical val-
ues 662, as symbolic expressions in terms of space coordi-
nate(s) 664, physical quantities and their space derivatives,
and/or time. It is also contemplated that physical quantities
may also be obtained from a materials setting 666 that may
be defined elsewhere in the model and as described else-
where herein. It is further contemplated that a physical
property may be specified via a procedure or routine that
computes a value of the property. The name or the procedure
or routine may be entered in the setting window 659 along
with parameters, if any, to be included. In one exemplary
aspect, the procedure or routine may be written using C,
Visual Basic®, Fortran, MATLAB®, or Microsoft Excel®.
The particular programming language for an implementa-
tion may vary in accordance with each particular aspect and
the calling standards and conventions included therein.

Referring now to FIG. 7, an exemplary aspect of a GUI
769 is illustrated that may be used to modify the PDEs via
an “Equation view” window. For example, PDEs, such as
the exemplary equation 772, may be defined by a physics
interface and further displayed and modified by a user in
order to introduce description(s) that may not be defined in
the settings windows for the corresponding property. In one
exemplary aspect, the PDEs may be displayed in response to
a user selecting a “Show equation view” element from a
menu. It is contemplated that in certain aspects, each prop-
erty of the model then displays a corresponding “Equation
view” with a corresponding settings window 770 where
changes to the equations may be made by a user. The
“Equation view” may be represented as a child node (e.g.,
element 774) to a physics interface property node (e.g.,
element 776). It is contemplated that in certain aspects
following a change to the settings window 770 for an

US 9,454,625 B2

17

“Equation view” node (e.g., element 774), the corresponding
settings for the physics interface property may be locked. In
one aspect, a lock indicia may be placed on the physics
interface icon (e.g., element 776) to indicate that one or
more properties for that interface of the model tree are
locked. The property may also be unlocked by the user by,
for example, selecting a “Reset all” feature 778, or other
unlocking element, in the settings window for the corre-
sponding a corresponding “Equation view” node 774.

Referring now to FIG. 8, an exemplary aspect a material
settings window 879 is illustrated for setting material prop-
erties of a domain. Material settings can include material
properties for some or all of the physics interfaces included
in a multiphysics model. It is contemplated that a model can
include different materials that are selected for the different
domains identified in the domain list 880. The material
properties may be defined by a user or they may be obtained
from a predefined materials library. In one aspect of a
material settings window, a material contents 882 list may
display a status of the material properties for a selected
material, in a selected domain, considering the physics
interfaces in the multiphysics model. For example, in the
context of an exemplary Joule heating process, the material
contents list may label, using an icon, the properties asso-
ciated with a multiphysics process involving Joule heating
and the properties described in a multiphysics interface. The
exemplary material properties may include, for example,
heat capacity, thermal conductivity, electric conductivity,
relative permittivity, and density. The material properties for
describing Joule heating may be defined via the material
settings window 879. Any required material properties may
be labeled or otherwise identified with an icon 84 or other
indicia (e.g., check mark). If a required material property is
not defined, the material contents 882 list can identify the
condition by highlighting the corresponding material prop-
erty row (e.g., using a red stop sign icon).

It is contemplated that materials and material properties
defined by a user can be saved and later accessed from
user-defined material libraries for use in separate or different
models. This aspect provides versatility by allowing users to
create material libraries for specific applications and further
can allow system developers to create material libraries for
use with a multiphysics modeling system.

It is contemplated that materials and materials properties
in a modeling system may be represented via nodes in a
model tree. This can allow for materials and material prop-
erties to be displayed, renamed, and/or added to a node in a
form accessible by a user (e.g., by right-clicking or other-
wise selecting the corresponding node in the model tree).

Referring now to FIG. 9, an exemplary aspect of a
boundary condition settings window 989 is illustrated for a
physical property boundary condition (e.g., temperature) for
a physics interface (e.g. heat transfer interface). The settings
window 989 may include a boundary list 990 to identify the
geometric boundaries on which physical propert(ies) may
apply. It is contemplated that a user can include one or more
boundaries in the boundary list by selecting a boundary from
graphical representations of the geometrical domain in one
or more graphics windows. Selection of the boundary can
occur via a selection-type device typically used for a com-
puting system (e.g., mouse, keyboard, other selection
device). It is further contemplated that a user may also select
boundaries from a predefined selection of boundaries rep-
resenting a specific portion of the boundary of a component
being modeled in a multiphysics model. The specific portion
may include the entire, or something less than the entire,
boundary of the component.

5

10

15

20

25

30

35

40

45

50

55

60

18

The physical properties of geometrical boundaries can be
specified in the boundary condition settings window 989 for
a corresponding boundary. The properties can be expressed
as values 992 specified in terms of numerical values, as
symbolic expressions in terms of the space coordinates, or
based on time. It is also contemplated that the properties can
be expressed as the physical quantities and the correspond-
ing space derivatives from a physics interface added using
systems described elsewhere herein. It is further contem-
plated that a procedure or routine to determine the value of
a property may also be specified and/or named in a manner
similar to as described elsewhere herein.

It is contemplated that boundary condition settings in a
modeling system may be represented via nodes in a model
tree. This can allow a user to add boundary properties to a
physics interface boundary condition, to rename a node, or
to display properties about a node (e.g., by right-clicking or
otherwise selecting the corresponding node in the model
tree).

Referring now to FIG. 10, an exemplary aspect of a GUI
1009 is illustrated for modifying PDE boundary conditions
via another “Equation view” feature 1000. Boundary con-
ditions defined by a physics interface may be displayed 1002
and modified by a user in order to introduce description(s)
that may not have been defined in the settings window(s) for
the corresponding physics interface. In one embodiment, the
boundary equations may be displayed by a user selecting, for
example, a “Show equation view” item from a Preferences
menu (not shown). It is contemplated that following a
change to the PDE boundary equations using the “Equation
view” feature (e.g., equation view node 1004), the corre-
sponding settings for that boundary condition may be
locked. To identify the locked nature of the boundary
condition, the boundary condition node 1006 for the bound-
ary condition property in a model tree may include an indicia
that looks like a lock. The boundary condition may be
unlocked by the user selecting “Reset all” 1008 in the
settings window, or some other unlocking feature, for the
corresponding property.

It is contemplated that in certain aspects of a modeling
system it may be desirable for the PDEs and boundary
conditions for the various selected physics interfaces asso-
ciated with a coupled system of PDEs to be stored in a model
object, which is described in more detail in the descriptions
for FIGS. 13-15. A model object may be desirable because
if the PDEs and boundary conditions are modified, for
example, using the GUI 769 in FIG. 7, the corresponding
model object may be updated accordingly. For example,
through the use of the settings windows for domains and
boundaries, respectively, the physical properties for the
domains and boundaries along with possible modifications
specified in “Equation view”, the Modeling and Simulation
Module 222 (see, e.g., FIG. 2) in one exemplary aspect may
create, initialize, and modify a model object that includes
data associated with a multiphysics model. It is furthermore
contemplated that the coupled system of PDEs and associ-
ated boundary condition fields may be updated, as well.

Referring now to FIG. 11, an exemplary aspect of another
type of settings window 1109 is illustrated for a study step
(e.g., stationary, time dependent, frequency) that may be
used in connection with solving for a study having one or
more study steps. The settings window 1109 may be asso-
ciated with solving PDEs for any subset of physical quan-
tities from any one or more physics interfaces, or from a
coupled PDE system. The GUI for the settings window 1109
includes a physics interfaces display area 1110 that lists the
one or more physics interfaces selected for a multiphysics

US 9,454,625 B2

19

model. The settings window 1109 may also be configured to
allow a selection of different meshes 1112 along with
different discretization 1114 and tolerances for different
study step. It is contemplated that the particular physics
interfaces for a model may be selected along with corre-
sponding study step settings. Then, the corresponding PDEs
may be solved one at the time in different study steps or the
corresponding PDEs may be solved for several physics
interfaces as a coupled system of PDEs in each study step.

Referring now to FIG. 12, an exemplary aspect of a model
tree 1219 is illustrated that includes a study node (e.g.,
“Study 17 1220) along with several child nodes (e.g., “Step
1: Stationary” 1222, “Solver Configurations”). The child
nodes in this exemplary aspect include study steps (e.g.,
“Step 1: Stationary” 1222, “Step 2: Time Dependent”) and
solver node(s) (e.g., “Solver 1” 1224). A parent node (e.g.,
primary node) and its child nodes (e.g., secondary nodes,
subnodes) may be referred to as branches in the model tree
(e.g., the study branch 1219). The study branch may include,
for example, PDE formulations (e.g., “Compile Equations:
Stationary” 1226aq, “Compile Equations: Time Dependent 2”
12265) and solver settings (e.g., “Stationary Solver 1”
1228a, “Time-Dependent Solver 17 1228b) for the different
studies (e.g, a stationary and a time-dependent analysis,
respectively). It is contemplated that a user may select a
subset of the models physics interfaces to be solved in each
of the study steps or select to solve for all physics interfaces
in every study step. It is further contemplated that a user may
also include several model nodes with corresponding phys-
ics interfaces, representing models described in different
spatial dimensions, and solving a subset of the physics
interfaces in each of the study steps or all physics interfaces
in every study step. The selection of physics interfaces in
each study step and the settings for a study step can also be
included in a model object.

The solver branch (e.g., Solver Configurations) of exem-
plary model tree 1219 is a child node to the study branch
(e.g., Study 1) and can also include its own child nodes, such
as a solver (e.g., “Solver 1) and/or a dependent variable
node (e.g., “Dependent Variables 1). These child nodes
may further have additional or their own child nodes, such
as “mod1_V” 1227a and “modl1_T" 12275. The dependent
variable node may be configured to allow a user to make a
finer selection of the solution in every study step, so that the
solver may be set to solve or not solve for individual
variables within a physics interface. It is contemplated that
a selection of dependent variables in the solver step and the
settings for a solver step are also reflected in the model
object.

The exemplary aspects of the modeling system presented
in FIGS. 3-12 are merely examples and are understood to
apply to broader physics processes and physic phenomena,
not just the processes or phenomena described herein or
illustrated in the FIGS. For example, it would be understood
that many different physics interfaces may be evaluated
beyond the selected physics for heat transfer that is illus-
trated in FIG. 4. As another example, it is also understood
that the multiple equation views can be viewed in FIG. 7 or
that many different material properties may be selected in
FIG. 8. The illustrated aspects are merely examples of the
broader operations that may be performed by the multiphys-
ics modeling system. Furthermore, the illustrated interfaces
are representative of one type of interface that may be used
in a multiphysics modeling system. Other types of graphical,
user, or alternative input-type interfaces are contemplated.

Referring now to FIGS. 13-15, non-limiting exemplary
flowcharts 1329, 1439, 1549 are illustrated for method(s)

10

15

20

25

30

35

40

45

50

55

60

65

20

including acts for automatically specifying one or more
systems of PDEs, representing the system of PDEs in a
single coupled form, and solving for the system of PDEs.
The various aspects described for the present disclosure can
be implemented using object-oriented programming lan-
guages (e.g., Java®, C++, C#) where an object is a type of
data structure that includes data fields and methods along
with their interactions. For example, objects in a model can
be created, modified, and accessed by method calls for a
model object. A model object may include the algorithms
and data structures for the model and may be further used to
represent the model. The model object can further include
methods for setting up and executing sequences of opera-
tions to create geometry, meshes, and solutions for the
model.

It is further contemplated that the methods of the model
object can be structured in a tree-like manner, such that
methods calls can be associated with the operations repre-
sented by the nodes in a model tree. By operating with such
a tree-like or model-tree type structure, top-level methods
(e.g., represented as parent nodes) may return references that
support further methods (e.g., represented by child nodes or
otherwise). At certain levels within the model object, the
method will perform certain acts, such as adding data to the
model object, performing computations, or returning data. In
the exemplary aspect of a geometry node (see, e.g., FIG. 29),
a model object may have different operations associated
with the geometry of a model that are represented by
secondary nodes (e.g., child nodes) to a geometry node.

Referring now to FIG. 13, at step 1330, a space dimension
is selected either directly (e.g., actual selection) or indirectly
(e.g., through a step associated with a predefined feature) by
a modeling system user. It may be desirable for the selection
of a space dimension to occur using the wizard window
previously described in FIG. 3 or through another type of
interface. Selection of the space dimension can include an
automatic update of a model object with a model item
having the method call syntax, model.modelNode().create(
), and/or a geometry item that specifies the space dimension
using the method call syntax, model.geom().create().

Next, at step 1331, the selection of physics interface(s)
may be performed. The selection(s) can occur using, for
example, the wizard window described for FIG. 4. Selection
of the physics interface(s) can include updating the model
object and adding corresponding physics item(s) in the
model object, model.physics().create(). Next, at step 1332,
the type(s) of stud(ies) may be selected. For example, the
selection of a study may be made using the wizard windows
previously described in FIG. 5. It is contemplated that the
selected stud(ies) can be later used to automatically generate
equation formulations and solver settings. It is further con-
templated that the model object can be updated with a
corresponding study item, model.study().create(). In certain
aspects, some or all of the created model object items may
be equipped with child items that may be represented by
nodes in the model tree. The nodes may describe the
operations specified in the model wizard and/or in the
settings windows described above.

At step 1333a, a determination is made if the settings for
the physics interfaces have been selected. If the logical
determination is true, the method then proceeds to step
13335, where another determination is made if a model is to
be added. If another model is to be added (i.e., true) to the
component(s) and/or process(es) already received by the
modeling system, the method then returns to step 1330 to
receive input associated with the additional model. A new
model item, model.modelNode().create(), may then be

US 9,454,625 B2

21

added including a model item with different or the same
space dimensions than the already available model. This
allows for the simulation of multiple processes in a mul-
tiphysics model. If no additional models are to be added (i.e.,
false), the method can proceed to step 1440. If the logical
determination in step 1333« is false, the method then pro-
ceeds to step 1334, where for each physics interface a
geometry is specified, except for zero-dimensional physics
interfaces where the assigned geometry is a point. It is
contemplated that geometric representation(s) may be cre-
ated or otherwise imported from a geometry file (e.g., a file
created using a CAD system). It is further contemplated that
the model object for the geometry can be updated to include
a geometric representation.

At step 1335, a specification of materials and correspond-
ing material properties is made. It is contemplated that
selection of materials and material properties may be per-
formed, for example, using the settings windows previously
described in FIG. 8. It is further contemplated that the model
object may be updated with a corresponding material item,
model.material().create(). Next, at step 136, the specifica-
tion of physical properties in the different domains and for
the different physics interfaces may be performed. It is
contemplated that the specification of domain settings may
be performed, for example, using the settings windows
previously described in FIG. 6. At step 1337, the physical
properties and interactions at the boundaries may be speci-
fied for the different physics interfaces. It is contemplated
that the specification of boundary conditions may be per-
formed, for example, using the settings windows previously
described in FIG. 9. It is further contemplated that the model
object can be updated for both domain settings and boundary
conditions using model object items of the type, model-
.physics().feature().

At step 13384, a determination is made if any of the PDEs
for the physics interfaces are to be modified. If the logical
determination is true, the method proceeds to step 13385,
where predefined PDEs for some or all of the physics
interface(s) can be changed, including domain equations
and/or boundary conditions. It is contemplated that specifi-
cation of the predefined physics interface equations in the
PDEs modification step may be performed, for example,
using the settings windows previously described in FIGS. 7
and/or 10. Step 13386 may also include updating the model
object. If the logical determination is false, or after the PDE
modification step is performed, the method may then pro-
ceed back to step 1333a.

Upon completion of the specification of all physics inter-
faces and upon no more models being added for the com-
ponent(s) and/or process(es) being modeled, the method
then proceeds to FIG. 14 and step 1440 where the mesh(es)
may be specified (see, e.g., FIG. 11). It is contemplated that
the specification of the mesh can include updating the model
object with a mesh item, model.mesh().create(). Next, at
step 1441, a determination is made if all the desired study
parameters have been included for the model. If the logical
determination is true, then the method proceeds to step 1550.
If the logical determination is false, the method proceeds to
steps for adding a study and/or adding a study step. For
example, at step 1442q, a determination is made if a new
study is to be added. If the logical determination is true, then
the method proceeds to step 14426, which allows for the
selection of the additional study. It is contemplated that the
additional study may be added according to study item,
model.study().create(). Following the selection of the
additional study or if the logical determination in step 1442a
is false, the method can proceed to step 1443a, where a

10

15

20

25

30

35

40

45

55

60

65

22

determination is made if study step(s) are to be added. If the
logical determination is true, the method proceeds to allow
study step(s) to be added for the model at step 14435. Once
the study step(s) are selected or if the logical determination
at step 1443a is false, the method proceeds to steps 1444 and
1445 where the physics interfaces in the study steps are
specified along with the study step settings. It is contem-
plated that the study settings may be specified, for example,
using the settings window described for FIG. 11. It is further
contemplated that study settings may update the model
object according to one or several items of the type, mod-
el.study().feature().set(). Following completion of the
study settings, the method proceeds to step 1550.

Referring now to FIG. 15, at step 1550, a solver sequence
is generated, and at step 1552, the solver sequence can be
edited based on a decision at step 1551 depending on
whether the solver is determined to be complete. It is
contemplated that the solver sequence can update the model
object by creating an item, model.sol().create(), based on
the stud(ies) associated with the model object. It is further
contemplated that the solver sequence can be edited with
items being added according to the model object item,
model.sol().feature().create(). Then, at step 153, the
method solves the PDEs and can generate a solution for the
model. It is contemplated that the solution step can be
updated by the model item, model.sol().runAll().

What has just been described in FIGS. 13-15 are non-
limiting exemplary aspects of method(s) for automatically
forming one or more sets of PDEs associated with one or
more physics interfaces and one or more geometric repre-
sentations (e.g., models that represent components or pro-
cesses) in different space dimensions. It is contemplated that
in certain aspects of the method(s), the PDEs may be
combined into a single, combined system of PDEs. A
numerical solver, such as a finite element solver may be
included, for example, in Modeling and Simulation Module
(e.g., 222) and may be used to solve a system of PDEs. The
finite element solver, for example, may solve a single system
of PDE corresponding to a single physics interface or may
solve for a coupled system of PDEs corresponding to several
physics interfaces and several geometric representations
(e.g., represented by model nodes).

Referring now to FIG. 16, a flowchart is illustrated that
includes method steps for some aspects of a method for
creating or forming an application data structure. The
method may be implemented on any one of the systems and
apparatus described elsewhere herein. The illustrated
method steps can be available to a user through a user
interface in an application builder module. In some aspects
of the present disclosure, application data structure(s) that
are produced or created by the described method(s) can be
loaded into multiphysics modeling system(s), such as sys-
tem(s) described elsewhere herein, to generate customized
application model(s), with corresponding application model
tree(s), for controlling selected settings in a multiphysics
model.

The method step for creating or forming an application
data structure can begin by creating or selecting a multiphys-
ics model 1610a and retrieving or loading onto the system
associated with the method a corresponding multiphysics
model data structure 16105. In some aspects, it is contem-
plated that the multiphysics model data structure can be
embedded 1610c, as an embedded model, in an initial
application data structure 16104d. It is further contemplated
that in some aspects, the saving or storing of a multiphysics

US 9,454,625 B2

23

model as an application file onto a memory device can also
create an initial application data structure with a correspond-
ing embedded model.

Next, at step 1620, an application feature can be added to
the application data structure. The application feature can be
represented by an application node in the application tree.
The application feature can be used to add an application
model node in an application model tree that is created from
a resulting application data structure. An application model
node in an application model tree can be specified to refer to
a setting in a model, such as a multiphysics model.

An application feature is applied to an initial application
data structure and used to create a customized application
model data structure. An application feature can be identi-
fied by a type, a description, and an icon. The type identifier
is a unique identifier that may be used to refer to the
application feature in the application data structure and can
also be displayed next to the feature in the application tree
in an application builder module, as may be displayed on a
GUI associated with the system on which the application
builder module is operating. The description identifier can
be displayed in a graphical user interface in a resulting
application model tree and may also be descriptive of an
operation that the node in the application model tree repre-
sents. The icon identifier, which may refer to an image file
containing the icon’s graphics, may also display the icon
graphics in the application model tree shown when the
application associated with an application data structure is
executed on a computer system.

In some aspects, application feature(s) can be defined with
restrictions and preferences, which then can be apply to a
corresponding application model node in an application
model tree. A restriction may be defined such that an
application model node can only be presented after another
node, for example when such a node depends on an opera-
tion represented by a previous node. In some aspects, the
preferences can be defined such that an application model
node is shown by default in the application model tree or that
an application model node may be present as a singleton
node in an application model tree. In aspects, such a single-
ton node may only be added once to the application model
tree, for example to define a setting such as an initial value
or condition.

Next, at step 1630, an input declaration may be added to
an application feature being added to an application data
structure. An input declaration is used to declare a new data
field where each data field may have a unique identifier,
name, an optional description, or combinations thereof.
Several types of input declarations are contemplated. For
example, a string data field can be applied to declare a string
value, a string array data field can be applied to declare an
array of strings of arbitrary length, or a double string array
data field can be applied to declare a double-array of strings
(e.g., an array where the array elements also are arrays) with
arbitrary length(s) for the outer and inner level. As another
example, a binary data field can be applied to declare a field
that can store any type of data more efficiently using a binary
form (e.g., serialization). A data field that stores a large
number of floating-point numbers is an example of a field for
which it may be desirable to store as a binary field, although
it is possible to represent such a field otherwise, such as with
an array of strings. It is also contemplated that any of the
data fields in an embedded model (e.g., the model embedded
in the application data structure, can also be used as input
declarations. Such data fields may be parameters in the

10

15

20

25

30

35

40

45

50

55

60

65

24

embedded model that once declared may be accessed by a
user of an application based on a created or formed appli-
cation data structure.

Next, in step 1640, input forms and form collections can
be added to an application data structure. It is contemplated
that in some aspects an input form represents a widget or a
collection of widgets that listens to or monitors different user
actions when the application is executed. A widget may
include element(s) of a graphical user interface that display
information or provide specific way(s) for a user to interact
with the application or a widget can also be a short process
for describing what a particular element of a GUI looks like,
how it behaves, and how it interacts in response to user
actions. An input form can be added to a window or menu
associated with an application feature. It is contemplated
that an application builder module may include predefined
template forms, form collections, and widget collections that
can be applied, for example, for creating settings windows.

A few exemplary aspects of input forms are now
described.

A text input form can include a text field that links to the
value of some string data, which is typically though not
always in a text box. In some aspects, linking can include
assigning to the text field the value of the string data which
may be based on some received input, such as received text
input or input received from a combobox. FIG. 25 also
exemplifies an aspect of linking where input received in a
text input form can be associated with an internal data field
in an embedded model (e.g., exemplary parameter, L, for
actuator length). FIG. 34 exemplifies another aspect of
linking where a combobox (e.g., exemplary impeller type
3426) sets a value of a data field (e.g., exemplary impeller
type field 3405) Settings for combobox input forms are
contemplated in some aspects to be similar to the setting for
text input forms (e.g., FIG. 25).

Apart from selecting any of the string data field objects in
an application feature, a string data value in the embedded
model can also be selected. An example of such a string data
value includes a model parameter. A combo box form can be
used to display a list of choices that can include values of
some string data, for example a string data field. The settings
may be similar to those of the text input. A check box form
can be applied to allow a user to select between two
alternatives, for example on or off, when an application is
executed. A button form can be used in a widget collection
to perform an action when clicked or otherwise selected in
an application. A menu item form may define a menu item
for the menu it is a child to. The parent can be a menu or an
application feature. A menu item form that has an applica-
tion feature as parent may be included in a context menu for
that application feature when the application is executed. A
table input form can provide for edits to values of string
array data field declarations, usually one field reference per
column of the table.

A form collection can be applied to group a collection of
member forms to achieve a desired layout for an applica-
tion’s user interface. A member form may be an input form
or an output form (see below) and may also include widgets
as members. Members in a form collection may be added by
reference to input and output forms or by directly adding
input and output forms as children (e.g., child nodes in a
model tree aspect) to the form collection.

It is contemplated that several types of form collections
may be available in an application builder module. A section
panel can be shown inside a form window associated with an
application feature when an application based on a created
application data structure is executed. Such a section panel

US 9,454,625 B2

25

can include a heading bar presenting for example a descrip-
tion and the member forms placed beneath the bar. A form
window can include at least one section panel and it is
further contemplated that an application feature may auto-
matically obtain one section panel child.

Another type of form collection available in an applica-
tion builder module can include a menu. Menu(s) can be
accessed in a toolbar or as a context menu for an application
node when the application based on a created application
data structure is executed. A menu can include at least one
menu item as a child feature or at least another menu as a
child feature. A menu may include one or more settings for
its description in an application builder module.

A form group can be yet another type of form collection
available in an application builder module. A form group can
be applied to arrange several other forms into one new form.
One such an example includes a situation where several
forms are to be shown above each other in a settings window
when an application based on a created application data
structure is executed.

A card stack may be yet another type of form collection.
Such a form collection can include a number of predefined
forms that are shown depending on choices made by a
system user during the execution of an application based on
the created application data structure. In some aspects, it is
contemplated that only a single member of the forms that is
also a member in a card stack is allowed to be active at a
given time when an application containing such a form
collection is executed. Controlling which of the forms in a
card stack that is shown can be implemented by applying
activation conditions, which are described in more detail
below. Other aspects of form collection can include a
desktop window. A desktop window form collection can
define a frame in a computer desktop where other forms may
be displayed when an application based on a created appli-
cation data structure is executed. Form windows can be
specific and predefined type(s) of desktop window(s). A
form window can define a frame where other forms may be
shown and positioned in rows and columns. A form window
can further be a default window for an application settings
window associated with every application feature during the
execution of an application based on a created application
data structure. A canvas window is yet another type of a
specific and predefined desktop window, and thus is also a
form collection. A canvas window can be used to display
graphics, such as geometries, meshes, and plots when an
application is executed.

Next, in step 1650, an activation condition can be added
to an input form or form collection added in step 1640. An
activation condition can be applied to specify a logical
condition that checks the value of an input declaration. For
example, for an input form, an activation condition can be
applied to determine if the form will be enabled or disabled
in the form window during the execution of the application.
A disabled form can either be hidden from a window or
grayed-out into an inactive state.

Next, in step 1660, an output declaration can be added to
an application feature. Output declarations can be applied to
declare data fields that cannot be changed by a user when the
application is executed. Instead the declared data fields can
be used for reading values from an application or an embed-
ded model in the application data structure. For example, an
output declaration can be used for declaring a result from an
evaluation in the embedded model when an application
based on the application data structure is executed.

Next, in step 1670, output forms or form collections can
be added to an application feature. An output form may

10

15

20

25

30

35

40

45

50

55

60

65

26

represent any widget that displays data from an output
declaration or an object in the embedded model that presents
data. A plot group in the embedded model is an example of
an output form that can be used directly in a canvas window.
It is contemplated that in some aspects output forms are
updated by an action step (see below) in order to update and
display the result of the action during the execution of an
application based on the application data structure.

It is contemplated that a plurality of output forms may be
desirable to define in an application builder module used to
generate an application data structure. A data display output
form can be applied to specify a display for output decla-
rations. A data display output form can also include a
reference to a global evaluation in the embedded model that
is added to the application data structure. The value of such
a global evaluation can be updated when the form is
executed by an action during the execution of the applica-
tion. A table data display output form can be a desirable way
of presenting a large number of output data from output
declarations. For example, it may be possible to use one
output reference per column of the table. An export output
form can also be used to open an export dialog to save a
result to a file during the execution of an application. An
export output form may refer to export objects in the
embedded model added to the application data structure, and
may, for example, include animations, images, and data.

Next, in step 1680, an activation condition may be added
to an output form. Such an activation condition can be
applied to determine if an output form should or should not
be displayed. For example, an activation condition can
determine if the output form will be enabled or disabled in
the form window during the execution of an application. A
disabled form can either be hidden from the window or just
grayed-out during the execution of an application.

Next, in step 1690, an action may be added to an appli-
cation feature. An action can include definitions for a
sequence of operations and can be executed from an input
form during the execution of an application based on a
created application data structure. For example, the action or
sequence definitions can be executed from an input form in
response to or following the receipt of a selection of a button
or icon. An action can also include an update of an output
form. For example, an action can include an update of a plot
in the embedded model, which then generates a new plot in
a graphics window in an application, using, for example, a
canvas window.

Next, in some aspects, step 1695 is contemplated. In step
1695, a wizard can be added to an application data structure.
A wizard can be applied to specify a sequence of windows
that may be displayed on a GUI one at a time or in various
combinations. A wizard can be placed directly under an
application root node and can start when a new application
model is created during the execution or implementation of
an application based on a created application data structure.
In some aspects, a wizard can be set up as a child to an
application feature and can be started when a new instance
of the application feature is created during the execution of
the application. It is contemplated that in some aspects that
a wizard includes at least one wizard step that is a child
node. Such a child node wizard step can include a specifi-
cation of the window for each step in the wizard. For
example, in some aspect each wizard step can include a
different window that may be defined in a settings window
form.

Next, the method proceeds to determine if additional
application features are to be determined or added. If not, the

US 9,454,625 B2

27

method proceeds to step 16100, where an application data
structure is generated as output from the above described
method steps.

It is contemplated in some aspects that the application
data structure includes the multiphysics model data structure
as an embedded model, from the model that the application
is based upon, together with a hierarchy that represent the
nodes generated by the method steps above.

It is further contemplated that the deployment step of an
updated or modified application data structure can include
placing the application data structure in a new or in an
existing library. A library may represent a real folder struc-
ture on a file system, or in a network. Any of the existing
libraries can be accessed by a system configured or adapted
to create multiphysics model data structure(s) based on an
application data structure.

It is contemplated that the above described method for
adding application features and generating an application
data structure is are associated with a model of a physical
system. The application feature(s), including the input dec-
laration(s), form feature(s), activation condition(s), and
action feature(s), are contemplated as being represented as
data that is added, acquired, received, or transmitted as part
of forming or generating a modified or updated application
data structure that includes the application features.

Referring to FIG. 17, an example of a unified modeling
language (UML) object diagram of instance level relation-
ships is illustrated between features in some aspects of an
application data structure created by the actions for the
process described in FIG. 16.

An application data structure can include at least one
embedded model 1701 and at least one application feature
1702. A plurality or one or more embedded models and
application features are also contemplated. An application
feature can include one or more (e.g., 1 . . . *) of input
declarations 1703 and one or more input forms 1704, which
can further be defined with a corresponding activation
condition 1714. An application feature can also include
anywhere from zero to one to a plurality (e.g., 0 . . . *) of
output declarations 1705 and output forms 1706 that may
also include a corresponding activation condition 1715. One
or more (e.g., 0 ... *) form collections can also be included
in an application feature 1702. Such collections can com-
prise inputs forms and/or output forms. Zero to one or more
(e.g.,0...*) actions 1708 can be included in an application
feature that may further be defined with zero to one or more
(e.g., 0 ... %) corresponding activation conditions 1716. In
some aspects, an application feature’s settings can also be
linked to a wizard step 1713 that is includes in a wizard
feature 1712. In addition, an application feature can also
include child application features 1709 that may also have
their own corresponding child features. An application fea-
ture can also include a wizard feature 1710 with correspond-
ing wizard steps 1711 that may link to child application
features 1709 of the application feature 1702. In some
aspects, a link can be understood to include that the settings
made in the wizard may set through setting forms certain
activation conditions, values in text inputs, execution of
actions, etc. In some aspects, linking can be done by setting
values of string data. For example, in FI1G. 34, an exemplary
settings window for impeller type may be included in a
wizard step where an exemplary selection of impeller would
then be linked to the impeller type and decide whether or not
to show the impeller pitch edit field.

Referring now to FIG. 18, an exemplary application tree
is illustrated that can be included in some aspects of features
1600a-d in FIG. 16 for adding a multiphysics model data

10

15

20

25

30

35

40

45

50

55

60

65

28

structure to an initial application data structure. Right-
clicking or selecting a root node 1802 in the application tree
can open or display a context menu where a multiphysics
model data structure may be added 1803 to the initial
application data structure.

The multiphysics model data structure can be selected
from a dialog box listing a library of multiphysics models
1804 that may be available from a multiphysics modeling
system or that may be or that may have been previously
created and stored by a user of a multiphysics modeling
system. Any such multiphysics model with its corresponding
multiphysics model data structure can describe devices and
processes accounting for static and quasi-static electromag-
netic fields, time harmonic and dynamic electric fields,
acoustics, fluid flow and chemical reactions, heat transfer,
structural mechanics, electromechanics, plasma chemistry
and physics, fluid-structure interactions, thermal stresses
and thermal expansion, electrochemistry, and other coupled
physics phenomena and processes. It is contemplated that in
some aspects of the systems and methods described in herein
that exemplary application features may set the frequency
for a time harmonic electromagnetic field (input), run a
simulation (action), and display the S-parameters (output)
by running a model defined in an embedded model. Another
example is an exemplary application feature for receiving an
input for updating a reference pressure, running a simula-
tion, and displaying the resulting wave propagation by
running an embedded model of an acoustics simulation. Yet
another example may be an exemplary application feature
that receives an inlet flow rate, runs a fluid flow simulation,
and displays the average flow rate at a pipe outlet from a
fluid flow model for a tank defined in an embedded model.
Yet another example may be an exemplary application
feature that determines the size of a heat sink (activation
condition, output) required to keep temperature below a
given input value (input), for a given input load (input), by
running a simulation (action) of a model of an electronic
device defined in an embedded model. Yet another example
is an exemplary application feature that receives the values
of a parameterized plasma reactor, updates the geometry
accordingly (action, activation condition), and runs a simu-
lation in order to calculate the deposit thickness of semi-
conductor materials on the surface of a wafer, by running a
plasma reactor model defined in an embedded model.

As a further example it is contemplated that an exemplary
model of a microactuator in a micro-electromechanical
systems (MEMS) module 1806 of a multiphysics modeling
system may be selected. Once selected, the multiphysics
model data structure can be represented as a model node
1805 in the application tree and, now referring back to FIG.
16, added to the application data structure according to steps
1610c¢ and 16004.

Referring now to FIG. 19, an exemplary aspect of an
application tree is illustrated according to some aspects of
step 1620 from FIG. 16 for adding an application feature to
an application data structure. Right-clicking or otherwise
selecting a root node 1903 in the application tree can open
a context menu 1904 where an application feature may be
added to the application data structure. Furthermore, in some
aspects, an application can also include an application
feature node that is present by default when a new applica-
tion is created. The application feature can be represented as
an application feature node 1905 in the application tree. The
application feature can be applied to represent settings in an
exemplary model of a device, for example a thermal micro-
actuator, which is further described by the multiphysics
model data structure.

US 9,454,625 B2

29

Referring now to FIG. 20, an exemplary settings window
2006 is illustrated for one exemplary application feature
representing settings for the thermal microactuator in the
multiphysics model according to some aspects of a method
for creating an application data structure. The settings win-
dow for the application feature can include a type 2007, a
description 2008, and an icon edit field 2009. It can also
include setting window sections for restrictions 2010 and
preferences 2011. In the preferences section, the “add as
permanent node” check box 2012 can be selected, which
when selected implies that this node will always be shown
in the application model tree when the application is used.
A singleton checkbox 2013 can also be used to specify that
an application feature can only be present alone in the
application model tree when the application is executed.

Referring now to FIG. 21, an exemplary application tree
is illustrated according to some aspects of step 1630 from
FIG. 16 for adding an input declaration to an application
data structure. Right-clicking or otherwise selecting a fea-
ture node 2102 in the application tree can open a context
menu 2103 where an input declaration can be added to the
application data structure, for example a string data field
2104 or any other input declaration type that is available or
listed. It is contemplated that such an input declaration can
be used to receive inputs for parameters used to control
settings in an embedded model when the application is
executed.

Referring now to FIG. 22, an exemplary application tree
is illustrated according to some aspects of step 1640 from
FIG. 16 for adding a form collection to an application data
structure. Right-clicking or otherwise selecting (e.g., touch-
screen, scrolling through list, hovering over) a feature node
2203 in the application tree can open a context menu 2204
where an input form or a form collection can be added to the
application data structure, for example a section panel 2205.
Other input forms and form collections may be available in
such a context menu, for example menus. A section panel
can also be available by default when an application is
created. A section panel, or any other input form or form
collection, can be represented as a node in the application
tree 2206.

Referring now to FIG. 23, an exemplary settings window
2307 is illustrated for a section panel form collection accord-
ing to some aspects of a method for creating an application
data structure. The section panel form settings window in
this exemplary aspect may only require a title for the section
panel 2308; though it is contemplated that additional child
features can be applied to define the contents of the section
panel form collection. For example, a section panel can be
designed to receive an input for the length of a MEMS
actuator defined in the embedded model. The section panel
title can therefore be set to actuator length 2308.

Referring now to FIG. 24, an exemplary application tree
is illustrated according to some aspects of another exem-
plary alternative of step 1640 from FIG. 16 for adding a text
input form to an application data structure. Right-clicking or
otherwise selecting a section panel node 2409 in the appli-
cation tree, or any other form collection node, can open a
context menu 2410 where a child input form can be added
to section panel form collection in the application data
structure. For example, the section panel can include a text
input form 2411 for receiving a text input for an actuator
length in the embedded model when the application is
executed. The text input form can be represented as a node
2412 in the application tree.

Referring now to FIG. 25, an exemplary settings window
2513 is illustrated for a text input form according to some

10

15

20

25

30

35

40

45

50

55

60

65

30

aspects of a method for creating an application data struc-
ture. It is contemplated that such a settings window can
include a data field reference 2514 that points to data
declared in an input declaration or to data previously
declared in the embedded model. For example, the text input
can refer to a parameter defined in the embedded model that
controls the length of the MEMS actuator. The settings
window can also include a data field settings section 2515
that may allow settings such as default values to be defined.
Such a default value can be shown in an input edit field when
the application is executed. In some aspects, an optional
widget section 2516 offers a ready-made widget collection
for the design of the text field. These optional widgets can
include description 2517, symbol 2518, and unit 2519. A
widget layout preview 2520 can show how the text field is
displayed when the application is executed.

Referring now to FIG. 26, an exemplary application tree
is illustrated according to some aspects of step 1650 from
FIG. 16 for adding an activation condition to an application
data structure. Right-clicking or otherwise selecting a text
input node 2602 in the application tree, or any other input
form node, opens a context menu 2603 for adding an
activation condition 2604. In this example, such a condition
can activate a text input form depending of the value of an
input parameter when the application is executed. Such an
input parameter can be obtained from another input decla-
ration and input form or by reference to a parameter in the
embedded model. An activation condition can be repre-
sented as a child node to an input form in the application
tree.

Referring now to FIG. 27, an exemplary application tree
is illustrated according to some aspects of steps 1660 and
1670 from FIG. 16 for adding a section panel and a data
display output form to an application data structure. It is
contemplated that an output declaration can be included in
the embedded model and linked to an output form by
reference, as described below. Right-clicking or otherwise
selecting an application feature node 2702 in the application
tree can open a context menu for adding form collections,
such as a section panel that can include an output form. It is
contemplated that such a section panel can be represented as
a node in the application tree 2703. Right-clicking or oth-
erwise selecting the section panel node 2703 can open a
context menu 2704 where an output form, such as a data
display form 2705 can be added to the section panel form
collection. A data display form can be used to display the
value of a derived value in the embedded model or to display
any other data declared in an output declaration when the
application is executed. The data display output form can be
represented as a child node to a section panel form collection
node 2706 in the application tree. It is further contemplated
that in some aspects an activation condition can be added to
an output form, such as the activation condition described
earlier for step 1680 from FIG. 16. The activation condition
can be added to the output form similar to how an activation
condition is added to an input for, as described for activation
condition 2604 from FIG. 26.

Referring now to FIG. 28, an exemplary settings window
2807 is illustrated for a data display form according to some
aspects of a method for creating an application data struc-
ture. Such a settings window can include an output data field
reference 2809 that points to data declared in an output
declaration or data already defined in the embedded model
at step 1650 from FIG. 16. For example, the data display
form can refer to a point evaluation 2808 defined in the
embedded model that displays the total displacement of a
MEMS actuator. An optional widget section 2810 can offer

US 9,454,625 B2

31

a ready-made widget collection for the design of the data
display form. Optional widgets can include description 2811
and symbol 2812. A widget layout preview 2813 can hint
how the data display form may be displayed during execu-
tion of the application.

Referring now to FIG. 29, an exemplary application tree
according to some aspects is illustrated based on step 1690
from FIG. 16 for adding an action to an application data
structure. Right-clicking or otherwise selecting an applica-
tion feature node in the application tree can open a context
menu 2903 for adding an action 2904. It is contemplated that
such an action can be represented as a node in the applica-
tion tree 2905. In some aspects, an action can refer to the
execution of a sequence of operations in the embedded
model.

Referring now to FIG. 30, an exemplary settings window
3006 for an action feature is illustrated according to some
aspects of a method for creating an application data struc-
ture. It is contemplated that such a settings window can
include a replica 3007 of an exemplary model tree in the
embedded model where an action can be linked or associ-
ated with an operation in the embedded model. For example,
the action feature can be linked or associated with the
sequence of operations 3008 that generates the geometry for
an actuator and the operation that executes the simulation in
the embedded model for the total displacement of a MEMS
actuator.

Referring now to FIG. 31, an exemplary application tree
is illustrated according to some aspects of an exemplary
alternative to 1640 from FIG. 16 for adding a menu form to
an application data structure. Right-clicking or otherwise
selecting an application feature node 3121 in the application
tree can open a context menu for adding a menu form 3122
to an application feature. The menu form can be included as
a menu item in the context menu that is displayed when
selecting the application feature during execution of the
application. The menu form can be linked to an action that
may be executed when selecting the context menu item
during execution of the application. An action can refer to
the execution of a sequence of operations in the embedded
model, for example an action linking to the exemplary
geometry sequence 3008 from FIG. 30. It is contemplated
that such a link to an action can be created by selecting an
action in menu forms settings window.

It is contemplated that in some aspects of the present
disclosure the terms link and associate may be used inter-
changeably and can generally refer to an association rela-
tionship between two elements or features as would be
understood in computer modeling. In some aspects, link may
further be understood to be an instantiation of an association
relationship, such as when an application is executed on a
modeling system.

Referring now to FIG. 32, an exemplary graphical user
interface 3206 is illustrated according to some aspects of an
application builder system or module for creating or forming
a mixer application data structure. An exemplary application
builder tree includes a representation of an embedded mul-
tiphysics model 3207 of a mixer and five exemplary appli-
cation features that define the user interface of the resulting
mixer application. A mixer application may contain an
application feature for defining the vessel 3214 of a mixer,
the impeller 3215, the type of liquid 3216, the operation of
the mixer 3217, and the results from the simulation 3218.

The embedded multiphysics model can include defini-
tions of the geometry, material properties, physics, mesh,
solver, and results for a mixer model. The embedded mixer
model can be applied to solve a fluid flow problem, using the

15

30

40

45

55

32

laws for conservation of momentum and mass defined by
physics interfaces in a multiphysics modeling system, for
the modeled mixer including a rotating impeller. In addition,
the multiphysics model can also define and be applied to
solve the concentration field for one or several chemical
species in the solution contained in the mixer.

Referring now to FIG. 33, an exemplary application
feature tree is illustrated according to some aspects for a
vessel application feature 3319 that can be used to receive
inputs for creating the vessel geometry in a mixer in a
method for creating an application data structure. The appli-
cation tree can represent the contribution of the vessel
application feature to the application data structure for the
mixer application. The vessel feature can define a node in the
model tree with a corresponding settings window that is
displayed during execution of the application. This settings
window can include a vessel specification section panel
3323 including two text input forms; one for the height 3324
and one for the diameter 3325 of the vessel. These input
forms can refer to parameters in the embedded multiphysics
model that can be used in the embedded multiphysics model
to parameterize the vessel geometry and change the height
and diameter of the vessel depending on the inputs entered
by a user during execution of the application.

Referring now to FIG. 34, an exemplary application
feature tree is illustrated for the impeller application feature
3420 according to some aspects of creating an application
data structure. It is contemplated that the impeller can be of
different types, for example a six-blade Rushton, a three-
blade pitched, or a four-blade pitched impeller. The impeller
feature can therefore include an impeller type parameter or
string declared by the impeller type input declaration feature
3405. The impeller type parameter can obtain its value from
the impeller type combo box input form 3426. A valid value
feature 3427, which can be a child feature to the combo box
input form, may show the values that are selected from the
combo box input form during the execution of the applica-
tion.

It is contemplated that in some aspects, the value of the
impeller type can be used as input to an if-statement feature
in the geometry sequence in the embedded model. Such an
if-statement can be applied to determine which of the
impeller types provides a better design option, and thus,
which of the impeller types should be built or prototyped.
Each impeller type can in addition also receive parameter
inputs, such as impeller diameter 3428 and clearance of the
impeller from the bottom of the vessel 3429, from the
impeller and vessel input forms. Some of these input forms
can also include activation conditions 3402. For example,
selecting a pitched impeller can display an edit field for
entering a pitch angle for the impeller 3430. This text input
form can then be displayed if the activation condition is
activated by a user selecting a pitched impeller during the
execution of the application.

Referring now to FIG. 35, an exemplary diagram with a
schematic description of the geometry operations and selec-
tions that can be executed by a geometry subroutine based
on the inputs from an impeller application feature are
illustrated according to some aspects for creating an appli-
cation data structure and executing the application. By
applying an action feature in an application feature, a
geometry subroutine can be called from a geometry
sequence and such call can be represented as a node in the
model tree, such as in a geometry branch, in the embedded
model. A geometry subroutine can run a parameterized
geometry sequence for the corresponding impeller type
determined by the if-statement, including, for example, the

US 9,454,625 B2

33

previously described a six-blade Rushton 3500, a three-
blade pitched 3501, or a four-blade pitched impeller 3502.

The output of the geometry subroutine can be the geom-
etry of the impeller and a set of selections corresponding to
the shaft surface 3503, impeller surface 3504, and also the
surface 3505 between a domain corresponding to the impel-
ler 3506 and the vessel domains 3507 as defined in the
embedded model. Each set of these selections can be used to
set the boundary conditions for the physics in the embedded
model during execution of the application. For example, an
impeller surface may be better implemented where a specific
boundary condition for the flow equation is attributed to the
rotation of the impeller. In addition, the interface of the
cylinder surrounding the impeller can in one example be
required to include a sliding mesh setting using for example
an arbitrary Langrangian-Eulerian (ALE) method to simu-
late the rotation of the impeller.

Referring now to FIG. 36, an exemplary application tree
for a waveguide application is illustrated according to some
aspects for creating an application data structure. The exem-
plary waveguide can include straight and elbow-shaped
sections. A first application feature, the waveguide general
feature 3621, can include form collections and actions for
specification of the cross section of the waveguide; the
operating conditions such as frequency; and the output
specifications, such as real or imaginary (if complex) value,
db (decibel), and S-parameter (Scattering parameter) in
corresponding output forms are displayed during the execu-
tion of the application. A straight section application feature
3622 can include form collections and actions for specifying
the length 3631 of the sections and an action to build such
section 3614. The corresponding elbow section feature 3623
can include form collections and actions for specifying the
direction of the bend and its radius 3632.

The straight section and the elbow section features for the
exemplary waveguide application can also create the corre-
sponding geometry features in the embedded model’s mul-
tiphysics model data structure during the execution of the
application with the action feature being applied, such as a
create section feature 3613. Correspondingly, a geometry
feature can also be removed from the embedded model’s
geometry sequence if a user chooses to remove during
execution of the application. In addition, a second action,
such as an add object selection feature 3615, can add the
selection created by the added waveguide section as a
contribution to a set of already defined cumulative selections
in the embedded model, as described further below.

Referring now to FIG. 37, an exemplary model tree and
waveguide geometry are illustrated. The exemplary model
tree and geometry were created by a waveguide application
including geometry subroutines executed in a multiphysics
modeling system according to some aspects of interpreting
an application data structure. Adding a waveguide section
can add a geometry feature to the embedded model, and the
models corresponding multiphysics model data structure,
during execution of the application. Geometry subroutines
for each section can be called from the geometry sequence
in the embedded model. It is contemplated that such geom-
etry subroutines can receive parameters for the cross-section
of the waveguide 3711 from the waveguide settings 3708. A
straight section subroutine can receive the inputs for the
length of the waveguide from a straight section feature 3709
while an elbow can receive the cross section direction, and
radius of the section from a Left/Right section feature 3710.
In addition, any of the straight or elbow section subroutines
can also receive an index that reveals if there is a previous
geometry subroutine call in the geometry sequence. The

10

15

20

25

30

35

40

45

50

55

60

65

34

geometry subroutine can also receive a starting position for
the respective waveguide section and, if there are previous
sections, the end position for the previous section can be
used as starting point for the next one.

The output from each geometry subroutine can be the
geometry of the corresponding section and a set of selections
for the walls 3712 and domain of the waveguide 3713. The
output can also include an index that reveals the number of
the current section in the waveguide (1 if it is the first
section, 2 if it is the second section, etc) and the end position
of a waveguide section 3714 to be used as the starting
position of the next section. If there are several sections,
each geometry subroutine can add its contribution to the
domain and wall selections and by this create cumulative
selections with contributions from each waveguide section.

Referring now to FIG. 38, an exemplary aspect of a
graphical user interface 3833 in an application builder
system or module for designing input forms, output forms,
and form collections is illustrated according to some aspects
for creating an application data structure. The exemplary
graphical user interface 3833 can allow for interactive
drawing and positioning of input forms, output forms, and
for interactive design of form collections 38344, 38346 and
widget collections including labels 3835a, 38355, text boxes
3836a, 38365, combo boxes 3837a, 3837b, check boxes
3838a, 38385, and other forms and widgets. Snapping may
also assist the user of the tool in positioning the forms and
widgets. A toolbar 3839 is also contemplated and can
include buttons and controls for showing and adding nodes
to the tree as an alternative to a context menu.

When a form or widget node is selected in the application
tree, for example a text box 38364, its layout may be shown
in a graphics builder window allowing for positioning in the
corresponding form or widget collection interactively. An
additional layout section 3840 can also be displayed in the
settings window for widget and form features. In this layout
section, the values for the layout information can be set; for
example, position 3841, width 3842, and height 3843 of a
form or widget. These values can be updated automatically
with interactive changes in the graphics builder window.

It is contemplated that relative positioning can be used for
forms in creating an application data structure. For example,
a first form or widget can be placed freely on a form
collection while other forms and widgets are then typically
placed relative to this for or widget with the aid of horizontal
and vertical snapping. Furthermore, in some aspects vertical
snapping and horizontal snapping can be mutually indepen-
dent, and each form or widget can contribute with several
vertical and horizontal snapping lines. All forms or widgets
can contribute with a horizontal snapping line along their
left edge. In addition, forms or widgets with a fixed width,
such as buttons, combo boxes, and text boxes, can contribute
with a horizontal snapping line also along their right edge.

It is contemplated that there may also be a row spacing
that can be specified as a preference for the graphics builder
window and the row spacing may typically have a default
value. In some aspects, the default spacing is about 5 pixels.
The row spacing can specify how much empty space there
should be from the bottom of one form or widget to the top
of the next. It can also be used to decide where to position
the form or widget on the row immediately below an
existing form or widget. This row spacing can contribute
with vertical snapping lines above and below a form or
widget, making it easy to start a new row of forms or widgets
above or below existing widgets.

When a user of the application builder system moves and
resizes widgets (e.g., resize handler 3844), the snapping may

US 9,454,625 B2

35

try to align the left edge of the widget with the left edge of
other widgets or the right edge of the widget with the right
edge of other widgets and similarly in the vertical direction.
While moving or resizing a widget, vertical and/or horizon-
tal snapping lines may be drawn in the graphics builder
window when snapping occurs. The snapping hot zone may
be about 6-7 pixels in each direction of the snapping line so
even though snapping is on it is possible to place the form
or widget freely by positioning it outside the hot zone of any
snapping line.

It is contemplated that there can be a two-way synchro-
nization between the selection in the application tree and in
the graphics builder window. If a form or widget node is
selected in the application tree 38364, the corresponding
form or widget may be selected in the graphics builder
window 38365 and vice versa. Since multiple forms and
widgets can be selected in the graphics builder window but
only one set of settings for one form or widget are displayed
in the settings window at a time, controls for changing width
and height may also be available on the toolbar. When
multiple forms or widgets are selected there may also be
toolbar buttons for the following operations: aligning the
left, right, top, bottom, or center of the selected forms or
widgets; distributing the widgets with equal spacing hori-
zontally or vertically; and giving the widgets equal width or
height. It is also contemplated to change the text displayed
on labels, check boxes, buttons, and so on by double-
clicking on the form or widget in the graphics builder
window and then just entering the new text inline within the
form or widget. Copy and paste may also be available to be
able to easily reuse form and widget configurations in
another form collection.

The graphics builder window can also have automatic row
and column creation. For example, at each unique left border
of a form or widget a new column may start and at each
unique top border a new row may start. Because of the
snapping used when drawing the forms and widgets, rather
few rows and columns need to be created. Based on the
width and height of a form or widget it may also be allowed
to span several rows and columns. If several forms or
widgets in a column have the same width as the form or
widget with the maximum width in the column, these forms
and widgets may be set to fill the column. This may be useful
for getting several text boxes and combo boxes in a column
with a straight right edge. The automatically created rows
and columns may also be individual elements in the graphics
builder window that can be selected by entering a certain
selection mode. A selected row may then be moved inter-
actively up and down the other rows. For a selected column,
a user of the application builder may then specify a fixed
width or that the width should adapt to the width of the top
level form if this is resized. There may also be tools such as
insert row and delete row to easily make room for a new row
or delete all forms or widgets in a row and compact the
layout accordingly.

A form collection can include many forms and widgets
and the grid layout may become fairly complex as new
forms and widgets are added to the form collection. In such
cases, it may be desirable to divide the form collection into
several form collections with individual layout management
and then place these as child form collections in the original
form. In such cases, it may be possible to enclose a couple
of forms and widgets in a form collection using a rectangle
and then use an extract toolbar button 3845 to specify that
those forms and widgets should be extracted to their own
form collection.

10

25

30

40

45

55

36

Referring now to FIG. 39, an exemplary flowchart is
illustrated of a method according to some aspects of inter-
preting an application data structure for generating and
maintaining an application model tree, context menu, and
settings window in a multiphysics modeling system. The
interpretation method can further be applied to generate an
application model data structure based on settings specified
by a user of a multiphysics modeling system. At step 3910a,
a list of applications are determined and displayed from a set
of available application data structures 39105. Next, at step
39204, a user can select an application from the displayed
menu list, which then adds the application model to an
application model data structure 39205.

After a decision is made to add an application model
feature, the process in FIG. 39 then proceeds to step 3930a,
where an application model tree with a corresponding con-
text menu that includes application model features can be
determined and displayed (15004) based on the definition of
application features available in the application data struc-
ture 393056. Next, at step 3940q, an application model
feature can be selected by a user. This selection determines
an application model feature to be used in later method steps
and adds the application model feature to the application
model data structure 39405. Next, at step 3950aq, a settings
window for an application model feature can be determined
and displayed using the definition of user inputs for the
application features available in the application data struc-
ture 39505. Then, at step 3960aq, a user can edit the settings
in the settings window for an application model feature. The
default settings and the changed settings are then stored in
the application model data structure 39605. Then, if no more
application model features are to be added, the application
model data structure is finalized in step 3980.

Referring now to FIG. 40, an exemplary selection window
4000 for displaying a menu of applications is illustrating
according to some aspects for interpreting an application
data structure. Selecting an application, such as a thermal
actuator application 4009, creates a first version of an
application model data structure. The application model data
structure can be edited by a user of an application through
the application user interface.

Different applications can cover modeling and simula-
tions over a wide range of fields. An application can cover
the modeling and simulation of a specific type of electric
motor 4001, fuel cell stack 4002, loudspeaker 4003, wave-
guide 4004, mixer 4005 for fine chemicals and food indus-
tries, multi-tube heat exchanger 4006, plasma reactor 4007,
and pressurized pipe systems 4008, which just names a few
of many examples for which an application data structure
and application model structure can be formed or created by
applying the processes and using the systems disclosed
herein.

Referring now to FIG. 41, an exemplary application
model tree window 4100 is illustrated including display
menus of application model features, such as a thermal
actuator feature 4110 in a thermal actuator application, with
a corresponding context menu 4120 according to some
aspects of interpreting an application data structure. Select-
ing the thermal actuator feature 4110 can display a settings
window 4130 where a user of the application can edit the
settings for the thermal actuator, such as its length 4140.
Selecting a Run Simulation option 4150 in the context menu
4120 for the thermal actuator feature can create a final
application model data structure, interpret the final model
data structure in a multiphysics modeling system, and
execute the simulation. It is contemplated that the applica-
tion model data structure can be interpreted in a multiphys-

US 9,454,625 B2

37

ics modeling system to generate the simulation results. The
simulation results can be displayed in an output form. For
example, a result 4160 of the displacement of the thermal
actuator can be displayed in the settings window 4130.

Referring now to FIG. 42, an exemplary unified modeling
language (UML) object diagram is illustrated of instance
level relationships between features according to some
aspects of an application model data structure created by the
method steps in FIG. 39. The application model data struc-
ture 4201 can include an entire multiphysics model data
structure, on which the application is based, together with a
reference to the application data structure 4211. In addition,
the application model data structure can also include a
hierarchy to represent the application model features added
by the user 4203. Each node can include a reference to the
application feature in the application data structure 4204. An
application model feature can include other application
model features as children 4205 if this is allowed by the
application data structure 4206.

Referring now to FIG. 43, an exemplary flowchart of a
method is illustrated according to some aspects for inter-
preting an application model data structure and generating a
multiphysics model data structure that includes a model
object. The method illustrated is for the steps prior to
discretizing and solving the equations in a multiphysics
modeling system. At step 4310a, an application model can
be determined from an application model data structure
43105. Next, at step 43205, the application model data
structure 43205 is loaded to the interpreter. Then, at step
4330, execution sequences from the application model data
structure are processed. At steps 4301 and 4302, an execu-
tion sequence can be processed and executed. In addition,
child execution sequences can also be processed at step
4303. When all execution sequences have been processed, a
multiphysics model data structure may be generated at step
4340.

In some aspects, an apparatus for generating an applica-
tion data structure includes a physical computing system
comprising one or more processors, one or more user input
devices, a display device, and one or more memory devices.
At least one of the one or more memory devices includes
executable instructions for generating an application data
structure. The executable instructions cause at least one of
the one or more processors to perform, upon execution, the
acts of embedding a multiphysics model data structure for a
physical system in an application data structure. The embed-
ded multiphysics model data structure includes at least one
modeling operation for the physical system. One or more
application features are determined, via at least one of said
one or more processors, to add to the application data
structure. The one or more application features are associ-
ated with a model of the physical system. First data is added,
via at least one of the one or more input devices, represent-
ing at least one form feature for at least one of the one or
more application features for the model of the physical
system. Second data is added, via at least one of the one or
more input devices, representing at least one action feature
for at least one of the one or more application features for the
model of the physical system. The second data representing
the at least one action feature is associated with the least one
modeling operation for the physical system to define a
sequence of operations for modeling the physical system.
The application data structure is updated. The updated
application data structure includes the added first data, the
added second data, and the associating defining the sequence
of operations. The updated application data structure is
stored on at least one of the one or more memory devices.

10

15

20

25

30

35

40

45

50

55

60

65

38

In some aspects, a method executed in a computer system
with one or more physical computing devices is configured
to generate a modified application data structure to model a
physical system. The method comprises the acts of embed-
ding, via one or more physical computing devices, a mul-
tiphysics model data structure in an application data struc-
ture stored in one or more memory devices. The embedded
multiphysics model data structure includes at least one
multiphysics modeling operation for the physical system
being modeled. One or more application features are deter-
mined, via at least one of the one or more physical com-
puting devices, to add to the application data structure. The
one or more application features are associated with the
physical system. Application data is acquired, via at least
one of the one or more physical computing devices, repre-
senting the one or more determined application features. The
application data include form data representing at least one
form feature and action data representing at least one action
feature for modeling the physical system. A modified appli-
cation data structure is formed including the acquired appli-
cation data. The modified application data structure is stored
on at least one of the one or more memory devices. The
action data representing the at least one action feature is
associated with the least one modeling operation for the
physical system defined in the embedded multiphysics
model data structure. The association between the action
data and the at least one modeling operation defines a
sequence of operations for modeling said physical system.

It is contemplated that the apparatus for generating an
application data structure and the method for generating a
modified application data structure to model a physical
system that are described above can further include in some
aspects one or more of the following features. Determining
one or more application features can include one or more
application feature selections received via one or more input
devices associated with a graphical user interface displaying
the application features. Acquiring of application data can
include application data received via one or more input
devices associated with a graphical user interface displaying
options for the application features where the options
include form features and action features. A defined
sequence of operations can be configured to generate a
geometry for the physical system. The forming of the
modified or updated application data structure can further
include the embedded multiphysics model data structure.
The apparatus and method can further include outputting the
modified or updated application structure as an input data
structure configured to be received and executed in a mul-
tiphysics modeling system. The application data represent-
ing the one or more application features can further include
declaration data defining input declarations for the physical
system being modeled where the declaration data includes
inputs of parameters to control settings for a physical
component of the physical system of the model embedded in
the multiphysics data structure.

It is further contemplated that the apparatus for generating
an application data structure and the method for generating
a modified application data structure to model a physical
system that are described above can also include in some
aspects one or more of the following additional features. The
form data representing at least one form feature can include
data defining an input form for collecting inputs of the
parameters for the input declaration. The form data repre-
senting at least one form feature can further include addi-
tional data defining an activation condition for collecting the
inputs of the parameters. The application data representing
the one or more application features can include data defin-

US 9,454,625 B2

39

ing an output declaration for declaring results to be dis-
played following implementation of a simulation of a model
embedded in the multiphysics data structure. The form data
representing the at least one form feature can include data
defining an output form for displaying results declared in the
output declaration. The form data representing the at least
one form feature can further include additional data defining
an activation condition for outputting the output form. The
apparatus and method can also include the act of represent-
ing the modified or updated application data structure in an
application tree.

In some aspects, a system generates a modified applica-
tion data structure. The system comprises one or more
physical memory devices, one or more display devices, one
or more user input devices, and one or more processors
configured to execute instructions stored on at least one of
the one or more physical memory devices. The instructions
cause at least one of the one or more processors to perform
the acts comprising embedding, via one or more physical
computing devices, a multiphysics model data structure in
an application data structure stored in one or more memory
devices. The embedded multiphysics model data structure
includes at least one multiphysics modeling operation for the
physical system being modeled. One or more application
features are determined, via at least one of the one or more
physical computing devices, to add to the application data
structure. The one or more application features are associ-
ated with the physical system. Application data representing
the one or more determined application features is acquired,
via at least one of the one or more physical computing
devices. The application data includes form data represent-
ing at least one form feature and action data representing at
least one action feature for modeling the physical system. A
modified application data structure is formed including the
acquired application data. The modified application data
structure is stored on at least one of the one or more memory
devices. The action data representing the at least one action
feature is associated with the least one modeling operation
for the physical system defined in the embedded multiphys-
ics model data structure. The association between the action
data and the at least one modeling operation defines a
sequence of operations for modeling the physical system.

It is contemplated that the system for generating a modi-
fied application data structure that is described above can
further include in some aspects one or more of the following
features. The acquiring of application data can include
application data received via one or more input devices
associated with a graphical user interface displaying options
for the application features. The options can include form
features and the action features. The defined sequence of
operations can be configured to generate a geometry for the
physical system. The system can also include performing the
act of outputting the modified application structure as an
input data structure configured to be received and executed
in a multiphysics modeling system. The application data
representing the one or more application features can further
include declaration data defining input declarations for the
physical system being modeled where the declaration data
includes inputs of parameters to control settings for a
physical component of the physical system of the model
embedded in the multiphysics data structure.

In some aspects, a method executed in a computer system
includes one or more processors configured to generate an
application model data structure to model a physical system.
The method comprises the acts of determining, via one or
more processors, a plurality of applications for modeling
one or more physical systems. The plurality of applications

10

15

20

25

30

35

40

45

50

55

60

65

40

are defined by application data stored in one or more
application data structures. A list of the plurality of appli-
cations is displayed in one or more graphical user interfaces.
A first input indicative of a selection of at least one of the
plurality of applications is received. One or more application
features are determined, via at least one of the one or more
processors, for the selection of at least one of the plurality
of applications. The one or more application features are
represented as application data defined in and retrieved from
at least one of the one or more application data structures.
The determined application feature are displayed in at least
one of the one or more graphical user interfaces. A second
input indicative of a selection of at least one of the appli-
cation features is received. One or more settings for the
selection of at least one of the application features is
determined via at least one of the one or more processors.
The one or more settings are associated with parameters for
the modeling of the one or more physical systems. Edit fields
including at least one of the one or more settings are
displayed via at least one of the one or more graphical user
interfaces. At least one of the edit fields is selected. Edits to
said one or more setting included in the selected at least one
edit field are receiving via one or more user input devices.
An application model data structure is generated, via at least
one of said one or more processors, that includes the
received edits to the at least one or more settings to the at
least one or more application features retrieved from the one
or more application data structures.

It is contemplated that the method for generating an
application model data structure to model a physical system
that is described above can further include in some aspects
one or more of the following features. The method can
further include the acts of determining, via at least one of
said one or more processors, a sequence of actions defined
in the generated application model data structures, and
executing, via at least one of said one or more processors,
the sequence of actions. The method can also include the act
of calling a geometry subroutine as part of an action of
executing a geometry sequence.

It is contemplated that the methods for generating an
application data structure, a modified application data struc-
ture, or an application model data structure, or the systems
for modifying an application data structure that are
described above can further include one or more of the
following exemplary features: (i) application features and
application data for setting a frequency for a time harmonic
electromagnetic field (input), running a simulation (action),
and displaying the S-parameters (output) by executing a
model defined in an embedded model; (ii) application fea-
tures and application data for receiving an input for updating
a reference pressure, running a simulation, and displaying
the resulting wave propagation by executing an embedded
model of an acoustics simulation; (iii) application features
and application data for receiving an inlet flow rate, running
a fluid flow simulation, and displaying an average flow rate
at a pipe outlet from a fluid flow model for a tank defined in
an embedded model; (iv) application features and applica-
tion data for determining the size of a heat sink (activation
condition, output) for keeping a temperature below a given
input value (input), for a given input load (input), by
executing a simulation (action) of a model of an electronic
device defined in an embedded model; (v) application fea-
tures and application data for receiving the values of a
parameterized plasma reactor, updating the geometry (ac-
tion, activation condition), and executing a simulation in
order to determine a deposit thickness of semiconductor

US 9,454,625 B2

41

materials on a surface of a wafer, by executing a plasma
reactor model defined in an embedded model.

Certain aspects of the present disclosure contemplate
methods, systems, or apparatus based on any and all com-
binations of any two or more of the steps, acts, or features,
individually or collectively, that are disclosed or referred to
or otherwise indicated herein.

The exemplary aspects for generating an application data
structure, for generating an application model data structure,
for interpreting an application model data structure, and for
generating a multiphysics model data structure presented in
FIGS. 16-43 are merely examples and are understood to
apply to broader applications and physic phenomena, not
just the application phenomena described in more detail or
illustrated in the figures. For example, it would be under-
stood that many different applications data structures can be
generated using the present disclosures. The illustrated
aspects are merely examples of the broader operations that
may be performed by an application builder system or
module and a multiphysics modeling system. Furthermore,
the illustrated interfaces are representative of a small num-
ber of interfaces that may be used in an application builder
module and a multiphysics modeling system. Other types of
graphical, user, or alternative input-type interfaces are con-
templated.

Each of these aspects and obvious variations thereof is
contemplated as falling within the spirit and scope of the
claimed invention, which is set forth in the following claims.
Moreover, the present concepts expressly include any and all
combinations and subcombinations of the preceding ele-
ments and aspects.

What is claimed is:

1. A system configured to generate a customized appli-
cation data structure for modeling physical systems, the
system comprising:

one or more processors, one or more user input devices,

optionally a display device, and one or more memory
devices, wherein the one or more processors are
adapted, during use, to

embed a pre-determined or selected multiphysics model

data structure in an application data structure, wherein
the multiphysics model data structure comprises a
representation of one or more models of physical
systems, each model of a physical system representing
physical phenomena and/or physical processes,
wherein the multiphysics model data structure com-
prises data representing at least one modeling operation
determining how to model or simulate the one or more
models of physical systems,

add data representing one or more application features to

the application data structure, where each application
feature comprises one or more of (i) first data repre-
senting at least one form feature, and/or (ii) second data
representing at least one action feature,

wherein a form feature comprises data specifying input

data and/or output data and/or presentation format of
input and/or output data, and wherein an action feature
comprises data specifying a sequence of operations to
be carried out, when executing the application data
structure, and

wherein at least one of the sequence of operations to be

carried out comprises the at least one modeling opera-
tion, and wherein at least one of the sequence of
operations to be carried out comprises an operation
providing data for generating at least one geometry of
at least a part of the one or more models of physical
systems,

10

15

20

30

35

40

45

50

55

60

42

whereby a customized application data structure is gen-
erated providing, when executed, a customized mod-
eling of the physical systems using the at least one
modeling operation, the at least one geometry of at least
a part of the one or more models of physical systems,
and at least one of the one or more application features.
2. The system according to claim 1, wherein the custom-
ized application data structure is generated using at least one
form feature.
3. The system according to claim 1, wherein the system is
further adapted to model or simulate one or more physical
systems by executing the customized application data struc-
ture, presenting output data and/or receiving input data from
a user according to at least one form feature, and executing
the at least one modeling operation using at least one
generated geometry.
4. The system according to claim 1, wherein the system is
further adapted to modify or update the application data
structure according to one or more of:
presenting via a graphical user interface one or more
pre-selected multiphysics model data structures to a
user and adding data representing one or more user-
selected and optionally user-modified multiphysics
model data structures to the application data structure,

presenting via a graphical user interface one or more
pre-selected application features to a user and adding
data representing one or more user-selected and option-
ally user-modified application features to the applica-
tion data structure, and

for at least one user-selected application feature, present-

ing via a graphical user interface one or more pre-
selected form features and/or one or more action fea-
tures, and adding data representing one or more user-
selected and optionally user-modified form features
and/or action features to the application data structure.

5. The system according to claim 1, wherein the one or
more application features further comprises data represent-
ing one or more of:

one or more of input declarations, each input declaration

controlling inputs of parameters controlling settings for
a physical component of at least one of the one or more
models of physical systems,

one or more activation conditions, each activation condi-

tion specifying one or more logical conditions checking
the value of an input declaration,

one or more output declarations, each output declaration

specifying results to be displayed following simulation
of the one or more models of physical systems,

one or more input forms controlling the displaying and

collecting of inputs, and

one or more output forms controlling the displaying of

results declared in an output declaration.

6. The system according to claim 1, wherein at least one
form feature enables, when the application feature compris-
ing the form feature is executed, receiving input from a user
to modify and/or pre-select the sequence of operations.

7. The system according to claim 1, wherein at least one
form feature enables, when the application feature compris-
ing the form feature is executed, receiving input from a user
to modify and/or pre-select the at least one geometry and/or
the at least one modeling operation.

8. The system according to claim 1, wherein the geom-
etries of the at least one geometry, each can be either zero
dimensional, two dimensional, or three dimensional.

US 9,454,625 B2

43

9. The system according to claim 1, wherein the least one
modeling operation comprises one or more partial differen-
tial equations for solving coupled systems or representa-
tions.
10. The system according to claim 1, wherein
application features comprise an input declaration, an
output declaration, and an action feature for setting a
frequency for a time harmonic electromagnetic field,
executing a simulation, and displaying S-parameters,

the embedded multiphysics model data structure is for an
acoustic simulation, and wherein application features
comprise an input declaration, an output declaration,
and an action feature for receiving an input for updating
a reference pressure, executing a simulation, and dis-
playing a resulting wave propagation,
the embedded multiphysics model data structure is for a
fluid flow simulation in a tank, and wherein application
features comprise an input declaration, an output dec-
laration, and an action feature for receiving an inlet
flow rate, executing a fluid flow simulation, and dis-
playing an average flow rate at a pipe outlet,
the embedded multiphysics model data structure is for an
electronic device, and wherein application features
include an input declaration, an output declaration, a
form feature, an activation condition, and an action
feature for determining a size of a heat sink and for
maintaining a temperature below a given input value at
a given input load, and/or

application features comprise an input declaration, an
output declaration, a form feature, an activation con-
dition, and an action feature for receiving values of a
parameterized plasma reactor, updating a geometry,
and executing a simulation for determining a deposit
thickness of semiconductor materials on a surface of a
wafer.
11. The system according to claim 1, wherein the appli-
cation data structure is an initial application data structure
that is used in generating the customized application data
structure, the initial application data structure including at
least one previously embedded application feature and/or at
least one previously embedded multiphysics model data
structure.
12. A method for generating a customized application data
structure for modeling physical systems, the method com-
prising:
embedding a pre-determined or selected multiphysics
model data structure in an application data structure,
wherein the multiphysics model data structure com-
prises a representation of one or more models of
physical systems, each model of a physical system
representing physical phenomena and/or physical pro-
cesses, wherein the multiphysics model data structure
comprises data representing at least one modeling
operation determining how to model or simulate the
one or more models of physical systems;
adding data representing one or more application features
to the application data structure, wherein each appli-
cation feature comprises one or more of (i) first data
representing at least one form feature, and/or (ii) sec-
ond data representing at least one action feature,

wherein a form feature comprises data specifying input
data and/or output data and/or presentation format of
input and/or output data, and wherein an action feature
comprises data specifying a sequence of operations to
be carried out, when executing the application data
structure,

wherein at least one of the sequence of operations to be

carried out comprises the at least one modeling opera-
tion, and wherein at least one of the sequence of
operations to be carried out comprises an operation

15

20

25

30

40

45

50

55

44

providing data for generating at least one geometry of
at least a part of the one or more models of physical
systems; and
generating a customized application data structure from
the embedding and adding operations, the customized
application data structure providing, when executed, a
customized modeling of the physical systems using the
at least one modeling operation, the at least one geom-
etry of at least a part of the one or more models of
physical systems, and at least one of the one or more
application features.
13. The method according to claim 12, wherein the
customized application data structure is generated using at
least one form feature.
14. The method according to claim 12, the method com-
prising modeling or simulating one or more physical sys-
tems by executing the customized application data structure,
presenting output data and/or receiving input data from a
user according to at least one form feature, and executing the
at least one modeling operation using at least one generated
geometry.
15. The method according to claim 12, wherein the
method is further adapted to modify or update the applica-
tion data structure according to one or more of:
presenting via a graphical user interface one or more
pre-selected multiphysics model data structures to a
user and adding data representing one or more user-
selected and optionally user-modified multiphysics
model data structures to the application data structure,

presenting via a graphical user interface one or more
pre-selected application features to a user and adding
data representing one or more user-selected and option-
ally user-modified application features to the applica-
tion data structure, and

for at least one user-selected application feature, present-

ing via a graphical user interface one or more pre-
selected form features and/or one or more action fea-
tures, and adding data representing one or more user-
selected and optionally user-modified form features
and/or action features to the application data structure.
16. The method according to claim 12, wherein at least
one form feature enables, when the application feature
comprising the form feature is executed, receiving input
from a user to modify and/or pre-select the sequence of
operations.
17. The method according to claim 12, wherein at least
one form feature enables, when the application feature
comprising the form feature is executed, receiving input
from a user to modify and/or pre-select the at least one
geometry and/or the at least one modeling operation.
18. The method according to claim 12, wherein the
geometries of the at least one geometry, each can be either
zero dimensional, two dimensional, or three dimensional.
19. The method according to claim 12, wherein the least
one modeling operation comprises one or more partial
differential equations for solving coupled systems or repre-
sentations.
20. The method according to claim 12, wherein
application features comprise an input declaration, an
output declaration, and an action feature for setting a
frequency for a time harmonic electromagnetic field,
executing a simulation, and displaying S-parameters,

the embedded multiphysics model data structure is for an
acoustic simulation, and wherein application features
comprise an input declaration, an output declaration,
and an action feature for receiving an input for updating
a reference pressure, executing a simulation, and dis-
playing a resulting wave propagation,

the embedded multiphysics model data structure is for a

fluid flow simulation in a tank, and wherein application

US 9,454,625 B2
45

features comprise an input declaration, an output dec-
laration, and an action feature for receiving an inlet
flow rate, executing a fluid flow simulation, and dis-
playing an average flow rate at a pipe outlet,
the embedded multiphysics model data structure is for an 5
electronic device, and wherein application features
include an input declaration, an output declaration, a
form feature, an activation condition, and an action
feature for determining a size of a heat sink and for
maintaining a temperature below a given input value at 10
a given input load, and/or

application features comprise an input declaration, an
output declaration, a form feature, an activation con-
dition, and an action feature for receiving values of a
parameterized plasma reactor, updating a geometry, 15
and executing a simulation for determining a deposit
thickness of semiconductor materials on a surface of a
wafer.

21. The method according to claim 12, wherein the
application data structure is an initial application data struc- 20
ture that is used in generating the customized application
data structure, the initial application data structure including
at least one previously embedded application feature and/or
at least one previously embedded multiphysics model data
structure. 25

